首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this contribution we presented the first biasing experiments performed on the IR-T1 tokamak. For this purpose, a movable biasing system was designed, constructed, and installed, and then the positive voltage applied to an electrode inserted inside the tokamak limiter and the plasma current and also the plasma horizontal displacement in the absence and presence of the biased electrode based on the multipole moments and magnetic probes techniques were measured. Measurements result has shown a modification of plasma confinement by decreasing the plasma displacement.  相似文献   

2.
In this contribution we presented the first biasing experiments performed on the IR-T1 tokamak. For this purpose, a movable biasing system was designed, constructed, and installed, and then the positive voltage applied to an electrode inserted inside the tokamak limiter and the plasma current and also the plasma horizontal displacement in the absence and presence of the biased electrode based on the multipole moments and magnetic probes techniques were measured. Measurements result has shown a modification of plasma confinement by decreasing the plasma displacement.  相似文献   

3.
In this paper, plasma fluorination is combined with plasma silicon deposition to achieve step gradient modification on an epoxy resin surface. The physicochemical characteristics of samples are investigated and the electrical performances measured. The obtained results show that compared with untreated and single treated samples, the samples treated by step gradient modification significantly improve the flashover performance. According to experiment and simulation, the mechanism explanations are summarized as follows. First, it is found that the step gradient conductivity can effectively optimize the electric field distribution of a needle-needle electrode. Then, step gradient modification suppresses the accumulation of surface charge at the triple junction and makes the charge distribution more uniform. Furthermore, it can accelerate the surface dissipation on a high electrical field region and control the dissipation rate on a low electrical field region. All these results can restrain surface discharge and increase the flashover voltage. The step gradient modification method proposed in this paper provides a new idea for improving the surface insulation performance.  相似文献   

4.
A multi-electrode array is commonly applied in a plasma sparker to generate stable acoustic pulses.In this paper,the effects of the electrode configuration on the performance of a plasma sparker have been investigated.In terms of the load electrical characteristics,the electrode radius and distance have negligible influence on the electric characteristics,whereas a larger electrode number results in a smaller voltage and a larger current but has little effect on the load energy.Regarding the acoustic characteristics,both the expansion and collapse pulses can be increased by decreasing the electrode tip radius.the influence of the electrode number and electrode gap distance on the amplitude of the expansion pulse was found to be negligible.And the amplitude of the collapse pulse decreases significantly with increasing electrode number.Increasing the electrode number decreases the energy efficiency for intense bubble interactions,thus,a small electrode tip radius and a small electrode number are preferred for the design of a plasma sparker if the total discharge energy is given.  相似文献   

5.
Plasma displacement is one of the main problems of tokamak plasma equilibrium. Control of plasma displacement has important role in plasma confinement and to achieve optimized tokamak plasma operation. In this contribution we presented a navel and simple optical technique for determination of tokamak plasma column displacement. For this purpose, an image processing technique used for the output signal of CCD camera and then plasma emission intensity profile and plasma position obtained.  相似文献   

6.
The first results of the movable electrode biasing experiments performed on the IR-T1 tokamak are presented. For this purpose, a movable electrode biasing system was designed, constructed, and installed on the IR-T1 tokamak, and then the positive voltage applied to an electrode inserted inside the tokamak limiter and the plasma current, poloidal and radial components of the magnetic fields, loop voltage, and diamagnetic flux in the absence and presence of the biased electrode were measured. Results compared and discussed.  相似文献   

7.
A new method to form a small divergence dc ion beam using a large-area single-hole electrode instead of a multiaperture electrode is described. A distinctive feature of this method is to make use of multiple electron beams in an ion source to control the spatial ion density distribution at the region of ion beam formation; the electron beams play a role to aid formation of the concave plasma boundary, which is required to extract a convergent ion beam from gaseous plasma according to the experimental facts described in Part (I). In this experiment, it was verified with three slab-like electron beams that formation of the concave boundary was possible in a stable and steady state. This electrode system can be applied to some types of the present high current ion sources to obtain large-area dc ion beams.  相似文献   

8.
《等离子体科学和技术》2016,18(10):1005-1011
The surface dielectric barrier discharge(SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths.  相似文献   

9.
In this study, the effects of the fluid cooling and electric field line deformation were investigated in a dielectric barrier discharge (DBD) plasma source. The DBD plasma jet is improved by covering the ground electrode and a power electrode with insulating oil. We obtained positive results as insulating oil prevents arc formation, while it improved the supplied power and plasma jet length, and increased radical production. Radical production of this nonthermal plasma jet is studied with polyvinyl alcohol–potassium iodide liquid.  相似文献   

10.
In this paper we presented poloidal flux loops technique for measurement of plasma horizontal displacement in the IR-T1 tokamak. In this technique, two poloidal flux loops were designed and installed on outer surface of the IR-T1 tokamak chamber, and then the plasma displacement was obtained from them. To compare the result obtained using this method, analytical solution is also experimented on the IR-T1. Results of the two methods are in good agreement with each other.  相似文献   

11.
Atmospheric pressure low-temperature plasma is a promising tool in biomedicine applications including blood coagulation, bacterial inactivation, sterilization, and cancer treatment, due to its high chemical activity and limited thermal damage. It is of great importance to develop portable plasma sources that are safe to human touch and suitable for outdoor and household operation. In this work, a portable and rechargeable low-temperature plasma spark discharge device (130 mm × 80 mm × 35 mm, 300 g) was designed. The discharge frequency and plume length were optimized by the selection of resistance, capacitance, electrode gap, and ground electrode aperture. Results show that the spark plasma plume is generated with a length of 12 mm and a frequency of 10 Hz at a capacitance of 0.33 μF, resistance of 1 MΩ, electrode gap of 2 mm, and ground electrode aperture of 1.5 mm. Biological tests indicate that the plasma produced by this device contains abundant reactive species, which can be applied in plasma biomedicine, including daily sterilization and wound healing.  相似文献   

12.
Atmospheric pressure glow discharge (APGD) plasma in air has high application value.In this paper,the methods of generating APGD plasma in air are discussed,and the characteristics of dielectric barrier discharge (DBD) in non-uniform electric field are studied.It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress.Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field,the development of electron avalanches in airgap is suppressed effectively and a large space of APGD plasma in air is generated.Further,through combining electrode structures,a large area of APGD plasma in air is generated.On the other hand,by using the method of increasing the density of initial electrons,millimeter-gap glow discharge in atmospheric pressure air is formed,and a maximum gap distance between electrodes is 8 ram.By using the APGD plasma surface treatment device composed of contact electrodes,the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained.The present paper provides references for the researchers of industrial applications of plasma.  相似文献   

13.
In this paper, we present a comparative study for estimating plasma column displacement using multipole moments and discrete magnetic probes methods. It is shown that multipole moments method gives a better performance in the real time determination of the plasma column displacement in IR-T1 tokamak.  相似文献   

14.
A digital camera measuring system has been used sucessfully to measure the space fluctuation behaviors of Induced Dielectric Barrier Discharge (IDBD) plasma at atmospheric pressure.The experimental results showed that:(1) The uniformity of elctron Temperature of space depends on discharge condition and structure of web electrode,For a certain web electrode the higher the discharge volgage is ,the more uniform distribution of electron temperature in space will be.For a certain discharge the finer and denser the holes on web electrode are,the more uniform distribution of electron temperature in space will be(2).Digital camera is an available equipment to measure some behaviors of the plasma working at atmospheric pressure.  相似文献   

15.
The self-bias potential (Vdc) induced on an RF-powdered electrode (153 mm Ø) in a plasma is measured using electrical probes which are buried in, de-insulated from, and RF-connected to the electrode. The configuration of the probes allows to study the distribution of Vdc discretely on the electrode. The potential is homogeneous in the absence of external magnetic field. In the presence of a homogeneous magnetic field parallel to the electrode, it is reduced and a monotonous gradient takes place in its distribution due to the plasma shift induced by E × B drift. When the magnetic field is rotated along the axis of the RF-electrode at a frequency less than 50 Hz, the distribution, which is almost identical to the one in a static field, rotates with the magnetic field. On the coordinate system rotating with the magnetic field, the probes are regarded to be rotating. The potential distribution is obtained as a continuous function of the azimuthal angle. Thus the rotation of the field provides information for the experimental interpolation.  相似文献   

16.
To improve the performance of a metal ion plasma jet in vacuum discharge,an anode-insulated cone-cylinder electrode with insulating sleeve is proposed in this paper.Discharge characteristics and generation characteristics of plasma of the electrode are investigated,effects of diameter of insulating sleeve,variety of cathode material and length of the insulating sleeve on characteristics of metal ion plasma jet are discussed.Results indicate that a directional and steady plasma jet is formed by using the novel electrode with insulating sleeve under high vacuum conditions.Moreover,the properties of metal ion plasma jet are improved by using the aluminum cathode and thin and long insulating sleeve.The study provides strong support for research of vacuum metal ion plasma thruster and ion implantation technology.  相似文献   

17.
A wide-viewing-angle visible light imaging system (VLIS) was mounted on the Joint Texas Experimental Tokamak (J-TEXT) to monitor the discharge process. It is proposed that by using the film data recorded the plasma vertical displacement can be estimated. In this paper installation and operation of the VLIS are presented in detailed. The estimated result is further compared with that measured by using an array of magnetic pickup coils. Their consistency verifies that the estimation of the plasma vertical displacement in J-TEXT by using the imaging data is promising.  相似文献   

18.
For the safe operation of Experimental Advanced Superconducting Tokamak (EAST) with the higher precise control of plasma, it is important to estimate the displacement of the magnet system. This paper force on the displacement measure method on the EAST magnet system during the device operation. Owing to the complicated constitution and environment of the EAST device, an optical metrology system was built to measure the displacement, and the measure result was also described in the paper.  相似文献   

19.
In the background of electrothermal-chemical (ETC) emission,an investigation has been conducted on the characteristics of a freely expanding pulsed plasma jet in air.The evolutionary process of the plasma jet is experimentally investigated using a piezoelectric pressure sensor and a digital high-speed video system.The variation relation in the extended volume,axial displacement and radial displacement of the pulsed plasma jet in atmosphere with time under different discharge voltages and jet breaking pressures is obtained.Based on experiments,a two-dimensional axisymmetric unsteady model is established to analyze the characteristics of the two-phase interface and the variation of flow-field parameters resulting from a pulsed plasma jet into air at a pressure of 1.5-3.5 MPa under three nozzle diameters (3 mm,4 mm and 5 ram,respectively).The images of the plasma jet reveal a changing shape process,from a quasiellipsoid to a conical head and an elongated cylindrical tail.The axial displacement of the jet is always larger than that along the radial direction.The extended volume reveals a single peak distribution with time.Compared to the experiment,the numerical simulation agrees well with the experimental data.The parameters of the jet field mutate at the nozzle exit with a decrease in the parameter pulse near the nozzle,and become more and more gradual and close to environmental parameters.Increasing the injection pressure and nozzle diameter can increase the parameters of the flow field such as the expansion volume of the pulsed plasma jet,the size of the Mach disk and the pressure.In addition,the turbulent mixing in the expansion process is also enhanced.  相似文献   

20.
In the last two decades a growing interest has been shown in the investigation of atmospheric pressure plasma jets (APPJs) that operate in contact with liquid samples. In order to form a complete picture about such experimental systems, it is necessary to perform detailed diagnostics of plasma jets, as one step that will enable the adjustment of system properties for applications in different areas. In this work, we conducted a detailed electrical characterisation of a plasma system configuration used for water treatment. A helium plasma jet, with a pin electrode powered by a continuous sine wave at a frequency of 330 kHz, formed a streamer that was in contact with a distilled water sample. An electrical circuit allowed the monitoring of electrical signals supplied to the jet and also to the plasma itself. An electrical characterisation together with power consumption measurements was obtained by using two different methods. The first method was based on the direct measurements of voltage and current signals, while in the second method we used 'Lissajous figures'. We compared these two methods when used for discharge power estimation and addressed their advantages and limitations. The results showed that both of these methods could be used to successfully determine power consumed by a discharge in contact with water, but only when taking into account power dissipation without plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号