首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DC accelerated aging behavior of the Co–Dy–Nb doped Zn–V–Mn-based varistors was investigated at different sintering temperatures of 850–950 °C. The microstructure of the samples consisted of ZnO grain as the main phase, and Zn3(VO4)2, ZnV2O4, and DyVO4 as the secondary phases, which acts as liquid-phase sintering aids. The nonlinear coefficient exhibited the highest value, reaching 57 for a sintering temperature of 950 °C and the lowest value, reaching 8 for a sintering temperature of 850 °C. Concerning stability, the varistors sintered at lower temperature than 925 °C exhibited a relatively low stability with %ΔE1 mA more than 10%. However, the varistors sintered at higher temperature than 925 °C exhibited a high stability. The varistors sintered at 925 °C exhibited the most stable accelerated aging characteristics, with %ΔE1 mA = −3.9%, %Δα = −40.3%, %ΔεAPP′ = −1.0%, and %Δtanδ = +19.1% for DC accelerated aging stress of 0.85 E1 mA/85 °C/24 h.  相似文献   

2.
Phase purity, microstructure, sinterability and microwave dielectric properties of BaCu(B2O5)-added Li2ZnTi3O8 ceramics and their cofireability with Ag electrode were investigated. A small amount of BaCu (B2O5) can effectively reduce the sintering temperature from 1075°C to 925°C, and it does not induce much degradation of the microwave dielectric properties. Microwave dielectric properties of ε r = 23·1, Q × f = 22,732 GHz and τ f = − 17·6 ppm/°C were obtained for Li2ZnTi3O8 ceramic with 1·5 wt% BaCu(B2O5) sintered at 925°C for 4 h. The Li2ZnTi3O8 +BCB ceramics can be compatible with Ag electrode, which makes it a promising microwave dielectric material for low-temperature co-fired ceramic technology application.  相似文献   

3.
The influences of B2O3 and CuO (BCu, B2O3: CuO = 1:1) additions on the sintering behavior and microwave dielectric properties of LiNb0.6Ti0.5O3 (LNT) ceramics were investigated. LNT ceramics were prepared with conventional solid-state method and sintered at temperatures about 1,100 °C. The sintering temperature of LNT ceramics with BCu addition could be effectively reduced to 900 °C due to the liquid phase effects resulting from the additives. The addition of BCu does not induce much degradation in the microwave dielectric properties. Typically, the excellent microwave dielectric properties of εr = 66, Q × f = 6,210 GHz, and τ f  = 25 ppm/oC were obtained for the 2 wt% BCu-doped sample sintered at 900 °C. Chemical compatibility of silver electrodes and low-fired samples has also been investigated.  相似文献   

4.
The effect of sintering process on microstructure, electrical properties, and ageing behavior of ZnO–V2O5–MnO2–Nb2O5 (ZVMN) varistor ceramics was investigated at 875–950 °C. The sintered density decreased from 5.52 to 5.44 g/cm3 and the average grain size increased from 4.4 to 9.6 μm with the increase of sintering temperature. The breakdown field (E1 mA) decreased from 6991 to 943 V/cm with the increase of sintering temperature. The ZVMN varistor ceramics sintered at 900 °C led to surprisingly high nonlinear coefficient (α = 50). The donor concentration (Nd) increased from 3.33 × 1017 cm−3 to 7.64 × 1017 cm−3 with the increase of sintering temperature and the barrier height (Φb) exhibited the maximum value (1.07 eV) at 900 °C. Concerning stability, the varistors sintered at 925 °C exhibited the most stable accelerated ageing characteristics, with %ΔE1 mA = 1.5% and %Δα = 13.3% for DC accelerated ageing stress of 0.85 E1 mA/85 °C/24 h.  相似文献   

5.
Ba5Nb4O15 powders were synthesized by molten-salt method in NaCl–KCl flux at a low temperature of 650–900 °C for 2 h, which is lower than that of the conventional solid-state reaction. This simple process involved mixing of the raw materials and salts in a certain proportion. Subsequent calcination of the mixtures led to Ba5Nb4O15 powders at 650–900 °C. XRD and SEM techniques were used to characterize the phase and morphology of the fabricated Ba5Nb4O15 powders, respectively. After sintering at 1,300 °C for 2 h, the densified Ba5Nb4O15 ceramics with good microwave dielectric properties of εr = 39.2, Q × f approximated as 27,200 GHz and τ f  = 72 ppm/°C have been obtained.  相似文献   

6.
The Zn2SiO4 ceramics with the addition of BaO and B2O3 are fabricated by traditional solid-state preparation process at a sintering temperature of 900 °C. The introduction of BaO and B2O3 to the binary system ZnO-SiO2 is achieved by adding 10 and 20 wt. % flux BB to the mixed ZnO-SiO2 ceramic powders pre-sintered at 1,100 °C, respectively. The chemical composition of the flux BB (50 wt.%BaO-50 wt.% B2O3) is located at a liquid phase zone with a temperature range of about 869–900 °C in the binary diagram BaO-B2O3. In addition, the introduction of BaO and B2O3 to the binary system ZnO-SiO2 is also achieved by the means of a chemical combination of H2SiO3, H3BO3, ZnO and Ba(OH)2·8H2O, which can result in the formation of the hydrated barium borates with low melting characteristics. In turn, by the liquid sintering aid of the barium borate melts, the preparation process of the Zn2SiO4 ceramics can be further simplified. In the two preparation methods, the Zn2SiO4 ceramics with the 1.5–2.0 ZnO/SiO2 molar ratios and the addition of a 10 wt. % flux BB can show good dielectric properties whereas the bending strength mainly depends on the microstructure of the Zn2SiO4 ceramics and SiO2 content in the composition of the specimen.  相似文献   

7.
The effects of CuO–Bi2O3–V2O5 additions on the sintering temperature and the microwave dielectric properties of MgTiO3 ceramics were investigated systematically. The CuO–Bi2O3–V2O5 (CuBiV) addition significantly lowered the densification temperature of MgTiO3 ceramics from 1400 °C to about 900 °C, which is due to the formation of the liquid-phase of BiVO4 and Cu3(VO4)2 during sintering. The saturated dielectric constant (εr) increased, the maximum quality factor (Qf) values decreased and the temperature coefficient of resonant frequency (τf) shifted to a negative value with the increasing CuBiV content, which is mainly attributed to the increase of the second phase BiVO4. MgTiO3 ceramics with 6 wt.% CuBiV addition sintered at 900 °C for 2 h have the excellent microwave dielectric properties: ε r= 18.1, Qf = 20300 GHz and τf = −57 ppm/ °C.  相似文献   

8.
The microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics doped by Pr6O11 in the content range of 0–5.49 wt% were investigated at different sintering temperatures (1,100, 1,150, 1,175, 1,200 °C). The increase of sintering temperature leads to more dense ceramics, which increases the nonlinear property, whereas it decreases the voltage-gradient and leakage current. With increasing Pr6O11 content, the breakdown voltage increases because of the decreases of ZnO grain size. The improvement of non linear coefficient together with the decrease of leakage current are related to the uniformly distribution of secondary phases along the grain boundaries of the ZnO. The varistors sintered at 1,175 °C with the 3.37 wt% Pr6O11 doping possess the best electrical properties: the varistor voltage, nonlinear coefficient, and leakage current are 340 V/mm, 46 and 0.63 μA, respectively.  相似文献   

9.
Polycrystalline samples of Ba4Ln2Fe2Ta8O30 (Ln = La and Nd) were prepared by a high temperature solid-state reaction technique. The formation, structure, dielectric and ferroelectric properties of the compounds were studied. Both compounds are found to be paraelectrics with filled tetragonal tungsten bronze (TB) structure at room temperature. Dielectric measurements revealed that the present ceramics have exceptional temperature stability, a relatively small temperature coefficient of dielectric constant (τ ε ) of −25 and −58 ppm/°C, with a high dielectric constant of 118 and 96 together with a low dielectric loss of 1.2 × 10−3 and 2.8 × 10−3 (at 1 MHz) for Ba4La2Fe2Ta8O30 and Ba4Nd2Fe2Ta8O30, respectively. The measured dielectric properties indicate that both materials are possible candidates for the fabrication of discrete multilayer capacitors in microelectronic technology.  相似文献   

10.
The formation of solid solutions of the type [Ba(HOC2H4OH)4][Sn1−x Ge x (OC2H4O)3] as BaSn1−x /Ge x O3 precursor and the phase evolution during its thermal decomposition are described in this paper. The 1,2-ethanediolato complexes can be decomposed to nano-sized BaSn1−x /Ge x O3 preceramic powders. Samples with x = 0.05 consist of only a Ba(Sn,Ge)O3 phase, whereas powders with x = 0.15 and 0.25 show diffraction patterns of both the Ba(Sn,Ge)O3 and BaGeO3 phase. The sintering behaviour was investigated on powders with a BaGeO3 content of 5 and 15 mol%. These powders show a specific surface area of 15.4–15.9 m2/g and were obtained from calcination above 800 °C. The addition of BaGeO3 reduced the sintering temperature of the ceramics drastically. BaSn0.95Ge0.05O3 ceramics with a relative density of at least 90% can be obtained by sintering at 1150 °C for 1 h. The ceramic bodies reveal a fine microstructure with cubical-shaped grains between 0.25 and 0.6 μm. For dense ceramics, the sintering temperature could be reduced down to 1090 °C, when the soaking time was extended up to 10 h.  相似文献   

11.
The microwave dielectric properties and the microstructures of Sm(Co1/2Ti1/2)O3 ceramics with B2O3 additions (0.25 and 0.5 wt%) prepared by conventional solid-state route have been investigated. The prepared Sm(Co1/2Ti1/2)O3 exhibited a mixture of Co and Ti showing 1:1 order in the B-site. Doping with B2O3 (up to 0.5 wt%) can effectively promote the densification of Sm(Co1/2Ti1/2)O3 ceramics with low sintering temperature. It is found that Sm(Co1/2Ti1/2)O3 ceramics can be sintered at 1,260 °C due to the grain boundary phase effect of B2O3 addition. At 1,290 °C, Sm(Co1/2Ti1/2)O3 ceramics with 0.5 wt% B2O3 addition possess a dielectric constant (ε r) of 27.7, a Q × f value of 33,600 (at 9 GHz) and a temperature coefficient of resonant frequency (τf) of −11.4 ppm/ °C. The B2O3-doped Sm(Co1/2Ti1/2)O3 ceramics can find applications in microwave devices requiring low sintering temperature.  相似文献   

12.
Ce0.8Sm0.2O1.9 (SDC) powder was synthesized by spray pyrolysis at 650 °C. XRD results showed that phase-pure SDC powder with an average crystallite size of 11 nm was synthesized. SDC electrolyte film was prepared by tape casting and sintered at different temperatures of 1,300, 1,400 and 1,500 °C for 2 h, respectively. The SDC electrolyte film was relatively denser and showed finer microstructure at relatively lower temperature of 1,400 °C, which might be due to the high sintering activity of the spray pyrolysis SDC powder. The ionic conductivity of the SDC electrolyte film sintered at 1,400 °C reached a maximum value of 9.5 × 10−3 S cm−1 (tested at 600 °C) with an activation energy for conduction of 0.90 eV.  相似文献   

13.
Ba(Zr0.2Ti0.8)O3 (BZT) ceramics are prepared from spray-dried powder by spark plasma sintering (SPS) and by normal sintering. By the application of SPS, ceramics with >96% relative densities could be obtained by sintering at 1,100 °C for 5 min in air atmosphere. The pellet as sintered by SPS at 1,100 °C was black and conductive. Although SPS was carried out in air atmosphere, the samples were deoxidized by heating the carbon die. By post-annealing at 1,000 °C for 12 h in air, the pellet was oxidized and became white and insulating. Grain growth was suppressed in the ceramics prepared by SPS, and the average grain size was 0.52 μm. The starting powder contained 1.90% carbon, mainly as binder, and the SPS-prepared ceramics and ordinary prepared ceramics contained 0.15 and 0.024% carbon, respectively. The BZT ceramics obtained by SPS and the subsequent annealing at 1,000 °C for 12 h exhibited a mild temperature dependence of their dielectric constant. The field-induced displacement of the BZT ceramics was less hysteretic and smaller than that of the ceramics sintered by the conventional method.  相似文献   

14.
The effects of replacement of MgO by CaO on the sintering and crystallization behavior of MgO–Al2O3–SiO2 system glass-ceramics were investigated. The results show that with increasing CaO content, the glass transition temperature firstly increased and then decreased, the melting temperature was lowered and the crystallization temperature of the glass-ceramics shifted clearly towards higher temperatures. With the replacement of MgO by less than 3 wt.% CaO, the predominant crystalline phase in the glass-ceramics fired at 900 °C was found to be α-cordierite and the secondary crystalline phase to be μ-cordierite. When the replacement was increased to 10 wt.%, the predominant crystalline phase was found to be anorthite and the secondary phase to be α-cordierite. Both thermal expansion coefficient (TCE) and dielectric constant of samples increases with the replacement of MgO by CaO. The dielectric loss of sample with 5 wt.% CaO fired at 900 °C has the lowest value of 0.08%. Only the sample containing 5 wt.% and10 wt.% CaO (abbreviated as sample C5 and C10) can be fully sintered before 900 °C. Therefore, a dense and low dielectric loss glass-ceramic with predominant crystal phase of α-cordierite and some amount of anorthite was achieved by using fine glass powders (D50 = 3 μm) fired at 875–900 °C. The as-sintered density approaches 98% theoretical density. The flexural strength of sample C5 firstly increases and then decreases with sintering temperature, which closely corresponds to its relative density. The TCE of sample C5 increases with increasing temperature. The dielectric property of sample C5 sintered at different temperatures depends on not only its relative density but also its crystalline phases. The dense and crystallized glass-ceramic C5 exhibits a low sintering temperature (≤900 °C), a fairly low dielectric constant (5.2–5.3), a low dielectric loss (≤10−3) at 1 MHz, a low TCE (4.0–4.25 × 10−6 K−1), very close to that of Si (∼3.5 × 10−6 K−1), and a higher flexural strength (≥134 MPa), suggesting that it would be a promising material in the electronic packaging field.  相似文献   

15.
The effect of CuO and B2O3 co-doping on the sintering behavior, microstructure and microwave dielectric properties of tungsten bronze type Ba4Nd9.3Ti18O54 (BNT) ceramics has been investigated by means of a traditional solid-state mixed oxide route. On the one hand, it was indicated that the mixture of CuO and B2O3 is an effective sintering aid for BNT matrix compositions owing to the existence of a low-temperature eutectic reaction. On the other hand, it was found that the addition of CuO and B2O3 has an obvious effect on microwave dielectric properties of BNT ceramics, depending on the amount of sintering aids, the sample density and microstructure. The liquid phases from sintering aids can promote densification, but simultaneously induce grain growth which tends to decrease the sintering driving force. BNT ceramics doped with 3 wt% CuO–B2O3 mixture can be well sintered at 950°C for 4 h and still exhibit relatively good microwave dielectric properties.  相似文献   

16.
The microstructure, electrical properties, and aging behavior of ZnO–V2O5–MnO2–CoO–Dy2O3 varistor ceramics were investigated for different contents of Dy2O3. The microstructure consisted of ZnO grain as a main phase and secondary phases such as Zn3(VO4)2, ZnV2O4, and DyVO4. The average grain size increased from 7.6 to 10.1 μm and the sintered density slightly increased from 5.53 to 5.57 g/cm3 with the increase of Dy2O3 content. The varistor ceramics added with 0.05 mol% Dy2O3 exhibited the most nonlinear properties, with nonlinear coefficient of 30, and the highest stability against DC-accelerated aging stress. The Dy2O3 acted as an acceptor due to the decrease of donor density in the range of 2.73 × 1018/cm3 to 1.28 × 1018/cm3.  相似文献   

17.
A one-pot polymerization method using citric acid and glucose for the synthesis of nano-crystalline BaFe0.5Nb0.5O3 is described. Phase evolution and the development of the crystallite size during decomposition of the (Ba,Fe,Nb)-gel were examined up to 1100 °C. Calcination at 850 °C of the gel leads to a phase-pure nano-crystalline BaFe0.5Nb0.5O3 powder with a crystallite size of 28 nm. The shrinkage of compacted powders starts at 900 °C. Dense ceramic bodies (relative density ≥ 90%) can be obtained either after conventional sintering above 1250 °C for 1 h or after two-step sintering at 1200 °C. Depending on the sintering regime, the ceramics have average grain sizes between 0.3 and 52 µm. The optical band gap of the nano-sized powder is 2.75(4) eV and decreases to 2.59(2) eV after sintering. Magnetic measurements of ceramics reveal a Néel temperature of about 23 K. A weak spontaneous magnetization might be due to the presence of a secondary phase not detectable by XRD. Dielectric measurements show that the permittivity values increase with decreasing frequency and rising temperature. The highest permittivity values of 10.6 × 104 (RT, 1 kHz) were reached after sintering at 1350 °C for 1 h. Tan δ values of all samples show a maximum at 1–2 MHz at RT. The frequency dependence of the impedance can be well described using a single RC-circuit.  相似文献   

18.
Ternary perovskite ceramics of Pb[(Zr0.5Ti0.5)0.8−x (Mg1/3Nb2/3)0.2+x]0.98Nb0.02O3.01 (PZTMN, x = −0.075, −0.05, −0.025, 0, 0.025, 0.05, and 0.075 ), are synthesized via dry–dry method. B-site precursors of PZTMN ([(Zr0.5Ti0.5)0.8−x (Mg1/3Nb2/3)0.2+x ]0.98Nb0.02O2.01, ZTMN) can be synthesized via a two-step solid state reaction method. The first calcination temperature is 1,300 °C, and the second is not higher than 1,360 °C. Incorporation of magnesium and niobium ions promotes the formation of the single phase solid solution with ZrTiO4 structure. Single phase perovskite PZTMN is formed at 780 °C, much lower than that in conventional process. Dense ceramics can be sintered at about 1,260 °C with dielectric and piezoelectric properties comparable to that of wet–dry method and higher than that of conventional method. It seems that B-site precursor method is cost effective in preparation of ternary piezoelectric ceramics.  相似文献   

19.
CaCu3Ti4O12 (CCTO) was synthesized and sintered by microwave processing at 2·45 GHz, 1·1 kW. The optimum calcination temperature using microwave heating was determined to be 950°C for 20 min to obtain cubic CCTO powders. The microwave processed powders were sintered to 94% density at 1000°C/60 min. The microstructural studies carried out on these ceramics revealed the grain size to be in the range 1–7 μm. The dielectric constants for the microwave sintered (1000°C/60 min) ceramics were found to vary from 11000–7700 in the 100 Hz–00 kHz frequency range. Interestingly the dielectric loss had lower values than those sintered by conventional sintering routes and decreases with increase in frequency.  相似文献   

20.
New dielectric ceramics in the SrLa4−xSmxTi5O17 (0 ≤ x ≤ 4) composition series were prepared through a solid state mixed oxide route to investigate the effect of Sm+3 substitution for La+3 on the phase, microstructure and microwave dielectric properties. At x = 0–3, all the compositions formed single phase ceramics within the detection limit of in-house X-ray diffraction when sintered in the temperature range 1500–1580 °C. At x = 4, a mixture of Sm2Ti2O7 and SrTiO3 formed. The maximum Sm+3-containing single phase ceramics, SrLaSm3Ti5O17, exhibited relative permittivity (εr) = 42.6, temperature coefficient of resonant frequency (τ f ) = −96 ppm/oC and quality factor (Q u f o ) = 7332 GHz. An analysis of results presented here indicates that SrLa4−xSmxTi5O17 ceramics, exhibiting τ f  ~ 0 and εr ~ 53 could be achieved at x ~ 1.4 but at the cost of decrease in Q u f o .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号