首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal performance of sputtered Cu films with dilute insoluble W (1.3 at.%) on barrierless Si substrates has been studied, using the analyses of focused ion beam, x-ray diffraction, and electrical resistivity measurement. The role of the Cu(W) film as a seed layer has been confirmed based on the thermal performance evaluations in both thermal cycling and isothermal annealing at various temperatures. The electrical resistivity of ∼1.8 μΩ-cm for Cu/Cu(W) film is obtained after thermal annealing at 400°C. Because of the good thermal stability, the Cu(W) seed layer is also considered to act as a diffusion buffer and is stable up to 490°C for the barrierless Si scheme. The results indicate that the Cu/Cu(W) scheme has potential in advanced barrierless metallization applications.  相似文献   

2.
The thermal annealing behavior of Cu films containing insoluble 2.0 at. % Mo magnetron co-sputtered on Si substrates is discussed in the present study. The Cu-Mo films were vacuum annealed at temperatures ranging from 200°C to 800°C. X-ray diffraction (XRD) and scanning electron microscopy (SEM) observations have shown that Cu4Si was formed at 530°C, whereas pure Cu film exhibited Cu4Si growth at 400°C. Twins are observed in focused ion beam (FIB) images of as-deposited and 400°C annealed, pure Cu film, and these twins result from the intrinsically low stacking-fault energy. Twins appearing in pure Cu film may offer an extra diffusion channel during annealing for copper silicide formation. In Cu-Mo films, the shallow diffusion profiles for Cu into Si were observed through secondary ion mass spectroscopy (SIMS) analysis. Higher activation energy obtained through differential scanning calorimetry (DSC) analysis for the formation of copper silicide further confirms the beneficial effect of Mo on the thermal stability of Cu film.  相似文献   

3.
This study reports the good thermal stability of a sputtered Cu(MoN x ) seed layer on a barrierless Si substrate. A Cu film with a small amount of MoN x was deposited by reactive co-sputtering of Cu and Mo in an Ar/N2 gas mixture. After annealing at 560°C for 1 h, no copper silicide formation was observed at the interface of Cu and Si. Leakage current and resistivity evaluations reveal the good thermal reliability of Cu with a dilute amount of MoN x at temperatures up to 560°C, suggesting its potential application in advanced barrierless metallization. The thermal performance of Cu(MoN x ) as a seed layer was evaluated when pure Cu is deposited on top. X-ray diffraction, focused ion beam microscopy, and transmission electron microscopy results confirm the presence of an ∼10-nm-thick reaction layer formed at the seed layer/Si interface after annealing at 630°C for 1 h. Although the exact composition and structure of this reaction layer could not be unambiguously identified due to trace amounts of Mo and N, this reaction layer protects Cu from a detrimental reaction with Si. The Cu(MoN x ) seed layer is thus considered to act as a diffusion buffer with stability up to 630°C for the barrierless Si scheme. An electrical resistivity of 2.5 μΩ cm was obtained for the Cu/Cu(MoN x ) scheme after annealing at 630°C.  相似文献   

4.
In this study we observed significantly improved properties, over a pure copper (Cu) film, for a copper-silver alloy film made with a pure copper film co-sputtered with a minute amount of either Ag0.3N0.4 or Ag1.2N0.7 on a barrierless Si substrate. In either case, no noticeable interaction between the film␣and the Si substrate was found after annealing at 600°C for 1 h. The Cu(Ag0.3,N0.4) film was thermally stable after annealing at 400°C for 240 h. The film’s resistivity was ∼2.2 μΩ cm after annealing at 600°C, while its leakage current was found to be lower than that of a pure Cu film by three orders of magnitude. The adhesion of the Cu(Ag1.2,N0.7) film to the Si substrate was approximately seven times that of a pure Cu film to a silicon substrate. Hence, a Cu film doped with Ag and N seems to be a better candidate for both barrierless metallization and the making of superior interconnects.  相似文献   

5.
The performance of GaAs power MESFET’s using backside copper metallization has been evaluated. 10 nm Ta metal was used as the diffusion barrier between GaAs and Cu for copper film metallization in this study. Microstructural characterization shows that the Cu/Ta films with GaAs remained stable up to 400 °C, indicating that Ta is a good diffusion barrier for Cu in GaAs MESFET’s. A copper metallized 6 mm power MESFET was thermal stressed to test the device stability. After annealing at 200 °C for 3 h, the devices showed very little degradation in power performance, and the thermal resistance of the device was 65 °C mm/W with 1.4 W/mm DC input power. Results in this study demonstrate that the feasibility of using Cu/Ta films for the backside metallization of GaAs power devices with stable electrical and thermal characteristics.  相似文献   

6.
This investigation prepares a low-resistivity and self-passivated Cu(In) thin film. The dissociation behaviors of dilute Cu-alloy thin films, containing 1.5–5at.%In, were prepared on glass substrates by a cosputter deposition, and were subsequently annealed in the temperature range of 200–600 °C for 10–30 min. Thus, self-passivated Cu thin films in the form In2O3/Cu/SiO2 were obtained by annealing Cu(In) alloy films at an elevated temperature. Structural analysis indicated that only strong copper diffraction peaks were detected from the as-deposited film, and an In2O3 phase was formed on the surface of the film by annealing the film at an elevated temperature under oxygen ambient. The formation of In2O3/Cu/SiO2 improved the resistivity, adhesion to SiO2, and passivative capability of the studied film. A dramatic reduction in the resistivity of the film occurred at 500 °C, and was considered to be associated with preferential indium segregation during annealing, yielding a low resistivity below 2.92 μΩcm. The results of this study can be potentially exploited in the application of thin-film transistor–liquid crystal display gate electrodes and copper metallization in integrated circuits.  相似文献   

7.
Effects of rapid thermal annealing on the characteristics of Cu films deposited from the (hfac)Cu(VTMS) precursor and on the barrier properties of TiN layers were studied. By the post-annealing, the electrical characteristics of Cu/TiN and the microstructures of Cu films were significantly changed. The properties of Cu films were more sensitive to the annealing temperature than the annealing time. Sheet resistances were decreased in 400–450°C ranges, and abrupt increases were observed above 750°C. It was also found that the copper films showed pronounced grain growth with the (111) preferred orientation. The grain growth and condensation of copper were observed below 500°C without formation of the CuO and Cu2O phase resulting in surface degradation. Above 500°C, the oxide compound of copper was partially formed on the surface and the inter-reaction on the Cu-TiN interface was started. The inter-reaction of Cu-Ti and Cu-Si interface vigorously occurred and the surface roughness was continuously deteriorated above 650°C. It revealed that the optimum annealing conditions for MOCVD-Cu/PVD-TiN structures to enhance the electrical characteristics without degradation of TiN barriers were in the range of 400°C.  相似文献   

8.
In this study, films of a copper (Cu) alloy, Cu(RuHfN x ), were deposited on silicon (Si) substrates with high thermal stability by co-sputtering copper and minute amounts of Hf or Hf/Ru in an Ar/N2 gas mixture. The Cu(RuHfN x ) films were thermally stable up to 720°C; after annealing at 720°C for 1 h, the thermal stability was great enough to avoid undesired reaction between the copper and the silicon. No copper silicide was formed at the Cu–Si interface for the films after annealing at 720°C for 1 h. The Cu(RuHfN x ) films appear to be good candidate interconnect materials.  相似文献   

9.
Cu(0.5 at.%Mg) alloy films were deposited on glass substrates, and annealed at 200–400 °C in vacuum. The resistivity of the Cu(Mg) films was reduced to about 3.0 μΩcm after annealing at 200 °C for 30 min, and the tensile strength of adhesion of the Cu(Mg) films to the glass substrates was increased to 30–40 and 35–55 MPa after annealing at 250 and 300 °C, respectively. The reduction in resistivity can be explained as reduced impurity scattering and grain-boundary scattering, since Mg segregation to the film surface and Cu(Mg)/glass interface, and consequent Cu grain growth, were observed. Increased adhesion of the Cu(Mg) films to glass substrates after annealing was also explained by the strong segregation of Mg atoms, and the formation of a reaction layer at the interface. Mg atoms were observed to have reacted with the glass substrates and formed a thin crystalline MgO layer at the interface in the samples annealed at 300 °C, while Mg atoms were highly concentrated above the Cu(Mg)/glass interface without oxide formation at the interface in the samples annealed at 250 °C. Thus, the process temperature and time to obtain low-resistivity and high-adhesion Cu alloy films on glass substrates could be reduced to 250 °C and 30 min using Cu(Mg) films.  相似文献   

10.
Formation of Ti diffusion barrier layers in Thin Cu(Ti) alloy films   总被引:1,自引:0,他引:1  
In order to study a formation mechanism of thin Ti-rich layers formed on the surfaces of Cu(Ti) wires after annealing at elevated temperatures, the 300-nm-thick Cu(Ti) alloy films with Ti concentration of 1.3 at.% or 2.9 at.% were prepared on the SiO2/Si substrates by a co-sputter deposition technique. The electrical resistivity and microstructural analysis of these alloy films were carried out before and after annealing at 400°C. The Ti-rich layers with thickness of ∼15 nm were observed to form uniformly both at the film surface and the substrate interfaces in the Cu(2.9at.%Ti) films after annealing (which we call the self-formation of the layers) using Rutherford backscattering spectrometry (RBS) and transmission electron microscopy (TEM). Both the resistivities and the microstructures of these Cu(Ti) films were found to depend strongly on the Ti concentrations. The resistivities of the films decreased upon annealing due to segregation of the supersaturated Ti solutes in the alloy films to both the top and bottom of the films. These Ti layers had excellent thermal stability and would be applicable to the self-formed diffusion barrier in Cu interconnects of highly integrated devices. The selection rules of the alloy elements for the barrier self-formation were proposed based on the present results.  相似文献   

11.
Schottky structures with copper and refractory metals as diffusion barrier for GaAs Schottky diodes were evaluated. These structures have lower series resistances than the conventionally used Ti/Pt/Au structure. Based on the electrical and material characteristics, the Ti/W/Cu and Ti/Mo/Cu Schottky structures are thermally stable up to 400°C; the Ti/Co/Cu Schottky structure is thermally stable up to 300°C. Overall, the copper-metallized Schottky structures have excellent electrical characteristics and thermal stability, and can be used as the Schottky metals for GaAs devices.  相似文献   

12.
The barrier properties and failure mechanism of sputtered Hf, HfN and multilayered HfN/HfN thin films were studied for the application as a Cu diffusion barrier in metallization schemes. The barrier capability and thermal stability of Hf, HfN and HfN/HfN films were determined using X-ray diffraction (XRD), leakage current density, sheet resistance (Rs) and cross-sectional transmission electron microscopy (XTEM). The thin multi-amorphous-like HfN thin film (10 nm) possesses the best barrier capability than Hf (50 nm) and amorphous-like HfN (50 nm). Nitrogen incorporated Hf films possess better barrier performance than sputtered Hf films. The Cu/Hf/n+–p junction diodes with the Hf barrier of 50 nm thickness were able to sustain a 30-min thermal annealing at temperature up to 500 °C. Copper silicide forms after annealing. The Hf barrier fails due to the reaction of Cu and the Hf barrier, in which Cu atoms penetrate into the Si substrate after annealing at high temperature. The thermal stabilities of Cu/Hf/n+–p junction diodes are enhanced by nitrogen incorporation. Nitrogen incorporated Hf (HfN, 50 nm) diffusion barriers retained the integrity of junction diodes up to 550 °C with lower leakage current densities. Multilayered amorphous-like HfN (10 nm) barriers also retained the integrity of junction diodes up to 550 °C even if the thickness is thin. No copper–hafnium and copper silicide compounds are found. Nitrogen incorporated hafnium diffusion barrier can suppress the formation of copper–hafnium compounds and copper penetration, and thus improve the thermal stability of barrier layer. Diffusion resistance of nitrogen-incorporated Hf barrier is more effective. In all characterization techniques, nitrogen in the film, inducing the microstructure variation appears to play an important role in thermal stability and resistance against Cu diffusion. Amorphousization effects of nitrogen variation are believed to be capable of lengthening grain structures to alleviate Cu diffusion effectively. In addition, a thin multilayered amorphous-like HfN film not only has lengthening grain structures to alleviate Cu diffusion, but block and discontinue fast diffusion paths as well. Hence, a thin multilayered amorphous-like HfN/HfN barrier shows the excellent barrier property to suppress the formation of high resistance η′-(Cu,Si) compound phase to 700 °C.  相似文献   

13.
Fabrication of CNTs/Cu composite thin films for interconnects application   总被引:1,自引:0,他引:1  
Carbon nanotubes/copper (CNTs/Cu) composite thin films were fabricated by combined electrophoresis and electroplating techniques. Electrical properties and structure of both CNTs/Cu thin films and the reference pure Cu thin films were investigated after annealing at different temperatures. The sheet electrical resistance of CNTs/Cu films decreases faster than that of pure Cu films with increase of annealing temperature. The grain size of CNTs/Cu film becomes much larger than that of pure Cu film at the same annealing temperature. The peak relative intensity of Cu (1 1 1) plane in CNTs/Cu film was stronger than that of pure Cu film. CNTs/Cu composite thin films, with better electrical properties than that of conventional pure Cu thin films, have been fabricated by electrophoresis and electroplating deposition techniques.  相似文献   

14.
It is essential to suppress agglomeration of Ag films caused by thermal treatment for their successful application as new metallization materials. Co-sputtered Ag(Al) and Ag(Au) films were investigated, with regard to their change in morphology and electrical resistivity after vacuum annealing. As a result, agglomeration of the Ag(Al) film (Al: 4.3 at.%) was not recognized even after annealing at 600 °C. However, void formation followed by de-wetting was observed for the Ag(Au) film after annealing, similar to that for a pure Ag film. The morphological change was accompanied by an increase in the resistivity of the Ag(Au) films with annealing temperature. On the other hand, the resistivity of the Ag(Al) films did not increase by annealing at temperatures from 400 to 600 °C. However, the film with the highest Al content, which was most resistive to agglomeration, had too high resistivity for use as a metallization material. By analysis of the Auger depth profile, the presence of very thin oxide layers at the surface of the film and at the interface with the substrate was confirmed for Ag(Al) films after annealing. This was considered to be the reason for the large difference in agglomeration behavior between the Ag(Au) and Ag(Al) films.  相似文献   

15.
High conductivity copper-boron alloys obtained by low temperature annealing   总被引:2,自引:0,他引:2  
The electrical behavior during annealing of copper films with a nominal concentration of 2 at.% boron has been investigated. The evolution of the resistivity of the film was monitored using an in situ technique, in which the film was rampannealed at constant ramp rates. At temperature of 150–200°C, the resistivity of the Cu(B) undergoes a first drop. This is followed by one or two such drops in resistivity, so that after completion of a ramp-anneal from 50°C to 750°C, the room temperature resistivity decreases from the initial value of 13 μΩ cm to 2.1 μΩcm, close to that of bulk copper. Isothermal annealing of the film also leads to substantial decreases in resistivity, from 13 μΩcm to 3 μΩ cm after annealing at 350°C for 8 h and to 2.5 μΩ cm at 400°C for 4 h. These results show that a dramatic reduction in resistivity of Cu(B) alloys takes place at temperatures below 400°C, suggesting possible applications for silicon device interconnections.  相似文献   

16.
In this work, an electroless CoWP film deposited on a silicon substrate as a diffusion barrier for electroless Cu and silicon has been studied. Four different Cu 120 nm/CoWP/Si stacked samples with 30, 60, 75, and 100 nm electroless CoWP films were prepared and annealed in a rapid thermal annealing (RTA) furnace at 300°C to 800°C for 5 min. The failure behavior of the electroless CoWP film in the Cu/CoWP/Si sample and the effect of CoWP film thickness on the diffusion barrier properties have been investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and sheet resistance measurements. The composition of the electroless CoWP films was 89.4 at.% Co, 2.4 at.% W, and 8.2 at.% P, as determined by energy dispersive X-ray spectrometer (EDS). A 30 nm electroless CoWP film can prevent copper penetration up to 500°C, and a 75 nm electroless CoWP film can survive at least up to 600°C. Therefore, increasing the thickness of electroless CoWP films effectively increases the failure temperature of the Cu/CoWP/Si samples. The observations of SEM and TEM show that interdiffusion of the copper and cobalt causes the failure of the electroless CoWP diffusion barriers in Cu/CoWP/Si during thermal annealing.  相似文献   

17.
Backside copper metallization of GaAs MESFETs using TaN as the diffusion barrier was studied. A thin TaN layer of 40 nm was sputtered on the GaAs substrate before copper film metallization, as judged from the data of X-ray diffraction (XRD), Auger electron spectroscopy (AES), and cross-sectional transmission electron microscopy (TEM), the Cu/TaN films with GaAs were very stable without interfacial interaction up to 550°C annealing; the copper metallized MESFETs were thermally stressed at 300°C. The devices showed very little change in the device characteristics (<3%) after thermal stress, and the changes of the electrical parameters and RF characteristics of the devices after thermal stress were of the same order as those devices without Cu metallization, these results show that TaN is a good diffusion barrier for Cu in GaAs devices and the Cu/TaN films can be used for the backside copper metallization of GaAs MESFETs  相似文献   

18.
The thermal stability of the Cu/Cr/Ge/Pd/n+-GaAs contact structure was evaluated. In this structure, a thin 40 nm layer of chromium was deposited as a diffusion barrier to block copper diffusion into GaAs. After thermal annealing at 350°C, the specific contact resistance of the copper-based ohmic contact Cu/Cr/Ge/Pd was measured to be (5.1 ± 0.6) × 10−7 Ω cm2. Diffusion behaviors of these films at different annealing temperatures were characterized by metal sheet resistance, X-ray diffraction data, Auger electron spectroscopy, and transmission electron microscopy. The Cu/Cr/Ge/Pd contact structure was very stable after 350°C annealing. However, after 400°C annealing, the reaction of copper with the underlying layers started to occur and formed Cu3Ga, Cu3As, Cu9Ga4, and Ge3Cu phases due to interfacial instability and copper diffusion.  相似文献   

19.
ZnS:Na thin films with (111) preferred orientation were deposited on glass substrates by vacuum evaporation method. The as-prepared films were annealed in flowing argon at 400--500 ℃ to improve the film crystallinity and electrically activate the dopants. The structural, optical and electrical properties of ZnS:Na films are investigated by X-ray diffrac- tion (XRD), photoluminescence (PL), optical transmittance measurements and the four-point probe method. Results show that the as-prepared ZnS:Na films are amorphous, and exhibit (111) preferred orientation after annealing at 400 --500 ℃. The PL emissions at 414 nm and 439 nm are enhanced due to the increase of the intrinsic defects induced by the thermal annealing. However, all the samoles exhibit high resistivitv due to the heavy self-compensation.  相似文献   

20.
Sol–gel technology has been applied for preparation of ZnO:Cu films. The proposed facile approach allows obtaining a wide variety of copper doped zinc oxide systems, revealing different structural and optical behaviors. The work presents structural and optical studies depending on Cu concentration and thermal treatments in the range of 500–800 °C. The structural analysis is performed by X-Ray diffraction (XRD). It reveals that small Cu addition enhances the film crystallization. Increasing copper concentration results in deterioration of ZnO:Cu crystallization. XRD study manifests no Cu oxide phases in ZnO:Cu film structure for lower Cu additions. For a specific higher copper concentration, an appearance of a small fraction of copper oxide is detected. Vibrational properties have been characterized by FTIR spectroscopy. The effect of the copper introduction into ZnO reveals a slight change of optical properties compared to ZnO films for certain Cu ratios. ZnO:Cu films with higher copper contents manifest different optical behaviors with very high transparency in spectral visible range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号