首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
运用自主设计合成的含有端炔和芳酰胺酸结构的硅烷偶联剂(CA-K)改善石英纤维(QF)/含硅芳炔(PSA)复合材料的高温界面黏结性能。FTIR、DSC以及TGA跟踪分析表明:CA-K在PSA固化时同步发生热闭环, 形成耐热的酰亚胺环结构, CA-K同时参与PSA的固化;XPS分析推断出CA-K与纤维发生化学键合;CA-K处理后QF/PSA复合材料的界面黏结强度增加, 常温下层间剪切强度(ILSS)和弯曲强度分别较未处理时提高了34.7%和40.4%, 在250 ℃时ILSS和弯曲强度的保留率分别达到82.5%和54.9%, 而500 ℃时ILSS和弯曲强度保留率为85.1%和64.2%。   相似文献   

2.
运用一种结构中含有端炔的硅烷偶联剂(AG-2),提高透波用石英纤维(QF)/含硅芳炔树脂(PSA)复合材料的界面粘接,运用TGA、XPS、SEM、AFM、表面能分析等表征了偶联剂与纤维、树脂的相互作用。凝胶时间和TGA分析表明AG-2加入对PSA的高温性能影响不大;TGA、XPS、表面能匹配分析等推断AG-2的作用机理为偶联剂分别与纤维表面、树脂基体发生化学偶联,同时增大了QF的表面能,改善了与PSA的表面张力匹配;偶联剂处理后QF/PSA复合材料界面粘结强度增加,复合材料的力学性能提高,层间剪切强度(ILSS)和弯曲强度分别较未处理前提高了34.77%和38.30%。  相似文献   

3.
制备苯乙炔全封端的含硅芳炔树脂,与含硅芳炔树脂(PSA)共混,得到满足RTM成型工艺要求的低黏度含硅芳炔树脂,合成三乙氧基乙炔基硅烷(TEOAS)并应用于改性石英纤维(QF)布,采用RTM工艺制备石英纤维增强的PSA树脂复合材料。对共混树脂的加工工艺性、耐热性能、石英纤维的表面和复合材料的性能进行研究。结果表明:共混PSA树脂不但具备较高的耐热性,而且有良好的加工工艺性能;X射线光电子能谱(XPS)分析表明QF表面接枝上乙炔基,TEOAS处理后QF与共混PSA树脂的界面黏结强度增强,复合材料的弯曲强度和层间剪切强度(ILSS)分别较未处理时提高了28.8%和25.4%。  相似文献   

4.
先合成双酚A型含硅芳炔醚(SAPE-BA)和二苯醚型含硅芳炔醚(SAPE-DPE)树脂并表征其结构,再将其与含硅芳炔树脂(PSA)共混得到改性树脂PSA/SAPE-BA和PSA/SAPE-DPE,用热模压法制备碳纤维布增强的改性PSA树脂基复合材料,研究了改性PSA树脂的加工工艺性能、热性能、力学性能和复合材料的力学性能。结果表明,与PSA树脂相比,改性PSA树脂不但具有较好的加工性能,还具有较好的耐热性能。两种改性PSA树脂的玻璃化转变温度(Tg)都高于500℃,在氮气中5%热失重温度(Td5)分别达550℃和590℃;这两种改性树脂浇注体的弯曲强度分别提高了78.3%和54.2%;碳纤维布T300增强PSA/SAPE-BA共混树脂基复合材料的弯曲强度和层间剪切强度(ILSS)分别提高了38.4%和33.5%;碳纤维布T300增强PSA/SAPE-DPE树脂复合材料的弯曲强度和ILSS分别提高了23.4%和21.8%。  相似文献   

5.
合成了乙炔基苯基偶氮酚醛树脂(EPAN),通过溶液共混的方法用其对含硅芳炔树脂(PSA)进行改性,研究了PSA-EPAN树脂的热性能,并制备了PSA-EPAN的碳布预浸料,经热模压制备碳纤维布(T300CF)增强PSA-EPAN复合材料,对其力学性能进行了研究。结果表明:EPAN均匀分布于PSA树脂中,EPAN共混改性PSA树脂的固化温度提高,混入质量分数为7%的EPAN,N2中固化PSA-EPAN树脂在800℃残留率超过90%,其玻璃化转变温度高于500℃,PSA-EPAN共混树脂浇铸体的弯曲性能高于PSA树脂,达40.7 MPa,提高了95.5%;PSA树脂经T300CF/PSA-EPAN复合材料力学性能显著提高,弯曲强度达到了423.5 MPa,提高了74%,层间剪切强度(ILSS)提高至29.53 MPa,增加了65%。  相似文献   

6.
采用氨基稀释剂(AD)和端乙炔基型聚苯并噁嗪(EB)树脂改性一种具有高力学性能的聚(间二乙炔基苯-二甲基硅烷)(PDMP)树脂。按照质量比PDMP∶EB∶AD=5∶1∶1进行共混后制备PDMP-EB-AD树脂。利用FTIR、DSC、介电分析仪(DEA)、TGA分析改性前后树脂的结构、黏度、固化过程和耐热性能变化。结果表明,AD与EB中的—NH2和—C≡CH均参与进PDMP固化过程中,共混后PDMP-EB-AD树脂固化温度升高,黏度降低,热分解温度(Td5)在N2和空气下分别为539.5℃和518.7℃,1 000℃质量保留率分别为85.1%和18.1%。利用浸渍法将PDMP-EB-AD树脂与石英纤维(QF)制备成预浸料进行模压成型,制备的QF增强PDMP-EB-AD树脂(QF/(PDMP-EB-AD))复合材料力学性能极大提高,且树脂与纤维的黏结性得到改善。常温下QF/(PDMP-EB-AD)复合材料弯曲强度和层间剪切强度(ILSS)分别为694.5 MPa和41.9 MPa,较QF/PDMP复合材料分别提高了176.6%和96.7%,250℃时弯曲强度和ILSS达到319.5 MPa和20.11 MPa。   相似文献   

7.
采用双酚A型邻苯二甲腈预聚树脂(BAPh-P)改性聚(间二乙炔基苯-二甲基硅烷)树脂(PDMP)制备了双酚A型邻苯二甲腈/聚(间二乙炔基苯-二甲基硅烷)树脂(PBA),利用DSC、FTIR、流变分析、TGA等技术分析其固化行为、黏度以及耐热性变化。结果表明,PBA树脂固化峰值温度较PDMP升高;固化反应主要为炔基的Diels-Alder和加成反应、氰基进一步交联生成三嗪环和酞菁环等结构反应;BAPh-P的加入提升了PDMP在空气下的耐热性,PBA-1(PDMP:BAPh-P质量比为5∶1)树脂固化物在N2和空气氛围质量损失5%的温度(Td5)分别为640.6℃和591℃,1000℃质量保留率为89.0%和26.9%;随着BAPh-P质量增加,PBA树脂固化物Td5呈下降趋势,但空气中Td5均高于PDMP;石英纤维增强PBA树脂基(QF/PBA)复合材料随BAPh-P质量增加室温弯曲强度逐渐升高,高温弯曲强度先升高后降低;其中QF/PBA-2复合材料室温和400℃弯曲强度分别为363 MPa和330 MPa,较PDMP分别提升91%和214%,室温和400℃的层间剪切强度(ILSS)分别为37.5 MPa和22.2 MPa。   相似文献   

8.
通过分子设计制备合成了含叠氮及苯并咪唑双官能团的偶联剂Azido-Benzimidazole(ABI),并考察了新型偶联剂对国产芳纶Ⅲ(DAF-Ⅲ)/聚三唑树脂(PTA)复合材料的界面增强作用。SEM、傅立叶变换衰减全反射红外光谱(ATR-FTIR)及XPS分析表明,ABI通过分子结构中的苯并咪唑基团与DAF-Ⅲ纤维形成分子间氢键,能够作用到DAF-Ⅲ上。FTIR及DSC分析表明,ABI中的叠氮基团与PTA树脂中的炔基发生反应,生成三唑环参与了PTA树脂的固化。经2.1wt%ABI处理后,DAF-Ⅲ/PTA树脂复合材料层间剪切强度(ILSS)和弯曲强度分别较未处理时提高了62.0%和43.7%。  相似文献   

9.
以3,4'-氧双邻苯二甲酸酐、1,3-双(氨丙烷基)四甲基二硅醚和间氨基苯乙炔或对氨基苯基炔丙基醚为原料,合成了六种端炔基遥爪型聚酰亚胺(API),采用模压成型制备了T300碳纤维布增强API(T300碳布/API)复合材料。利用FTIR、1H NMR、DSC、TGA、DMA等方法研究了API树脂及T300碳布/API复合材料的结构和性能。结果表明,六种API树脂溶解性良好,其加工窗口随分子量的增加而变宽,端炔丙氧基API(API-e)树脂的加工性能优于端乙炔基API(API-a)树脂;API树脂固化物的热稳定性随分子量的增加而降低,API-a树脂固化物5%热失重温度(Td5)和800℃残留率高于API-e固化物,分别为473.7℃和48.8%;T300碳布/API复合材料的玻璃化转变温度可达220℃以上,其力学性能随其分子量的增加而提高,T300碳布/API-e复合材料在室温和200℃的力学性能均优于T300碳布/API-a复合材料。室温下T300碳布/API-e复合材料的弯曲强度为636.5 MPa,拉伸强度为406.1 MPa,层间剪切强度(ILSS)为48.4 MPa,在200℃的弯曲强度和ILSS分别为381.9 MPa和33.9 MPa。   相似文献   

10.
合成了苯乙炔全封端含硅芳炔树脂(FEC-PSA)和含炔丙氧基苯并口恶嗪(P-appe),通过与含硅芳炔树脂(PSA)混合得到了4种不同共混质量比的改性含硅芳炔树脂,用模压成型制备了单向T800碳纤维增强改性含硅芳炔树脂复合材料。利用红外光谱、核磁共振氢谱、差示扫描量热分析和热重分析等方法对改性含硅芳炔树脂及其复合材料的结构和性能进行了研究。结果表明,共混树脂的黏度随温度的升高和加入P-appe质量分数增加而明显下降。当P-appe质量分数为30%时,共混树脂固化物5%热失重温度(T_(d5))为531℃,800℃残留率为85%;共混树脂浇铸体的弯曲强度为41.5 MPa,冲击强度达5.5 kJ/m~2;改性PSA树脂经T800碳纤维增强,其复合材料的弯曲强度和弯曲模量在常温下为1557 MPa和153 GPa,层间剪切强度为66 MPa。  相似文献   

11.
在对含乙烯基聚硅氮烷(PSN1)树脂基本性能研究的基础上,以石英纤维布为增强材料,利用层压法制备了石英纤维布/含乙烯基聚硅氮烷耐高温透波复合材料(QF/PSN1),并对其在室温和高温下的力学性能及介电性能进行了测试与表征。研究结果表明:PSN1树脂工艺性能良好,黏度低于1 Pas(60~151℃),固化温度小于200℃;耐热性能优异,在N2和空气氛围下,其固化物失重5%时的温度均高于480℃、800℃时的残重均高于76%。QF/PSN1复合材料力学性能优异,弯曲强度和层间剪切强度随温度升高出现先下降后上升的趋势;450℃烘烤10 min后,其弯曲强度仍在120 MPa以上。QF/PSN1复合材料介电性能优异:在1~12 GHz范围内,QF/PSN1复合材料在室温~450℃范围内介电常数(ε)均低于3.2,介电损耗(tanδ)均小于0.01。上述研究结果表明:含乙烯基聚硅氮烷作为耐高温透波材料的新型树脂基体具有重要的应用价值。   相似文献   

12.
采用上浆的方法将碳纳米管(CNTs)引入到碳纤维表面,制备CF/CNTs/环氧多尺度复合材料。相比上浆处理前,复合材料的层间剪切强度及弯曲强度分别提高了13.54%和12.88%。采用力调制原子力显微镜及扫描电镜的线扫描功能对复合材料界面相精细结构进行分析。结果表明:CNTs的引入在纤维和基体间构建了一种CNTs增强环氧树脂的界面过渡层。该界面过渡层具有一定厚度,且其模量和碳元素含量呈梯度分布。在固化成型前对含有CNTs的复合材料进行超声处理,促使碳纤维表面的CNTs向周围树脂中分散,发现复合材料的界面过渡层被弱化,其层间剪切强度及弯曲强度较超声处理前分别下降了7.33%和5.34%,验证了CNTs强化的界面过渡层对于提高复合材料界面性能的重要作用。  相似文献   

13.
为改善SiO2在三元乙丙橡胶(EPDM)复合材料中的分散性并获得良好界面性能,通过传统自由基聚合法合成了一系列不同接枝率的大分子偶联剂,即EPDM、甲基丙烯酸甲酯(MMA)和γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)的三元共聚物。采用不同接枝率的大分子偶联剂对SiO2/EPDM复合材料进行改性。通过FTIR、1 H-NMR、TGA、DMA和SEM对三元共聚物的结构和SiO2/EPDM复合材料的性能进行研究。结果表明:添加了大分子偶联剂的SiO2/EPDM复合材料的相容性得到了显著改善,拉伸强度和撕裂强度比未经偶联剂处理的SiO2/EPDM复合材料分别提高了109.4%和44.0%;SiO2表面改性后的SiO2/EPDM复合材料的储能模量和玻璃化转变温度有所升高。  相似文献   

14.
以再生高密度聚乙烯(HDPE)、沙柳木粉和废轮胎胶粉为原材料,含硫偶联剂Si69为界面相容剂,采用模压法制备木粉/橡胶-塑料三元复合材料。考察Si69对木粉/橡胶-塑料三元复合材料力学性能及耐热性能的影响,并采用FTIR和SEM分析Si69改性前后废轮胎胶粉的表面特性及木粉/橡胶-塑料三元复合材料的微观断面形貌。结果表明:Si69与废轮胎胶粉发生了化学反应。当Si69添加量为5wt%时,木粉/橡胶-塑料三元复合材料的界面结合较佳,力学性能及耐热性能较优,其中弯曲强度、弯曲模量、拉伸强度较未添加Si69的木粉/橡胶-塑料三元复合材料分别提高了13.85%、7.24%和6.63%;维卡软化温度和热变形温度较未添加Si69的木粉/橡胶-塑料三元复合材料分别提高了6.95℃和8.70℃,Si69可在一定程度上提高木粉/橡胶-塑料三元材料的耐热性能。Si69添加量为7wt%时,木粉/橡胶-塑料三元复合材料的缺口冲击强度可达到3.99 k·Jm-2。   相似文献   

15.
晏义伍  曹海琳  甘舟 《复合材料学报》2017,34(12):2702-2707
将偶联剂改性的氧化石墨烯(GO)添加到酚醛树脂中,制备了GO改性的玄武岩织物/酚醛树脂复合材料板材。采用三点弯曲、短梁剪切和落锤冲击试验方法,研究了GO的含量对复合材料弯曲性能、层间剪切强度(ILSS)和冲击性能的影响。结果表明,GO的加入显著提高了玄武岩织物/酚醛树脂复合材料的力学性能,随着GO含量的增加,复合材料的力学性能先增大后减小;相对于空白样,当GO的含量为2wt%时,弯曲强度和弯曲模量分别提高了39%和25%;ILSS提高了43%;当GO的含量为1wt%时,冲击破坏载荷增加40%,破坏吸收能量增加60%。  相似文献   

16.
偶联剂对硼酸铝晶须/双马来酰亚胺性能的影响   总被引:2,自引:1,他引:2  
应用自行合成的一类新型硼酸酯偶联剂及硅烷偶联剂等对硼酸铝晶须进行表面处理,考察了硼酸铝晶须对双马来酰亚胺树脂体系性能的影响.结果表明,硼酸酯处理后的晶须对材料的改性作用较硅烷更加显著;硼酸铝晶须添加到双马来酰亚胺树脂中后,材料的弯曲强度在晶须含量为5%时达到最大值,而后随晶须含量的增大稍有下降;随晶须添加量的增大材料的弯曲模量和耐热性逐渐提高;经硼酸酯处理的晶须与树脂基体具有更好的界面粘接.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号