首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
采用静电纺丝法制备了多级中空结构的SnO2纳米纤维, 然后将SnO2纳米纤维置于90℃乙酸锌溶液中, 恒温水浴条件下, 在SnO2纳米纤维上生长了ZnO纳米球, 形成了异质结构的SnO2/ZnO复合纳米纤维。分别通过XRD、SEM、EDX和XPS等表征手段对异质复合纳米纤维SnO2/ZnO材料的结构、形貌及元素含量进行了表征分析。异质结构的SnO2/ZnO复合纳米纤维保持了SnO2纳米纤维多级中空的纤维结构, SnO2纳米纤维长度约为300 nm, 依附于SnO2纤维表面的SnO2纳米颗粒生长的ZnO纳米球直径为250~300 nm。采用静态气体测试系统对异质复合纳米纤维SnO2/ZnO气敏元件的气敏性能进行了测试。测试结果表明: 异质复合纳米纤维SnO2/ZnO气敏元件在最佳工作温度350℃下, 对(0.5~100)×10-6丙酮具有优异的响应灵敏度、较好的选择性和长期稳定性。异质复合纳米纤维SnO2/ZnO中存在于ZnO纳米球与SnO2纳米颗粒间的N-N同型异质结导致复合材料晶界势垒高度的降低, 改善了电子与空穴的输运特性, 促使SnO2/ZnO异质复合纳米纤维的吸附能力大大增强, 从而改善了SnO2/ZnO元件的丙酮敏感特性。  相似文献   

2.
通过混合烧结法将BiVO4与BaTiO3复合获得BiVO4/BaTiO3复合光催化剂。采用XRD和FTIR分析了产物的物相,可知,BiVO4/BaTiO3复合材料中仅含有BiVO4和BaTiO3,无杂相生成。TEM观察发现,粒径约为55 nm的纳米BaTiO3颗粒较好地附着在平均颗粒尺寸为~400 nm的BiVO4颗粒表面,形成异质结构。选用酸性橙7(AO7)作为反应物模型,以模拟太阳光作为光源,研究了BiVO4/BaTiO3复合材料的光催化降解性能。结果表明:与BaTiO3相比,BiVO4/BaTiO3复合材料的光催化降解活性显著提高;当BiVO4的含量为8wt%时,BiVO4/BaTiO3复合材料的光催化效果最佳,光照6 h染料的降解率可达~68%,为BaTiO3的1.9倍。BiVO4/BaTiO3复合材料的光催化性能较为稳定,循环使用3次后AO7的降解率仍有~62%。催化机制分析说明,BaTiO3与BiVO4复合后,光生电子和空穴能够向对方迁移,促进了光生电荷的分离,有利于光催化效率的提高。   相似文献   

3.
采用溶剂热法, 以乙腈为溶剂和葡萄糖为原料制备了粒径约4 nm的氮掺杂碳量子点NCDs。当激发波长从330 nm增加到470 nm, NCDs水溶液发射光谱出现红移。随后, 将一定配比的NCDs、TiO2及5 mL超纯水超声混合60 min, 并在80℃烘箱内陈化24 h, NCDs纳米颗粒成功地复合到TiO2(TiO2)表面。该方法有效地拓宽了TiO2吸收光谱的范围, 并且减少了光生电子和空穴对, 从而增强了TiO2的光催化制氢性能。实验结果表明: 投料比为m(NCDs):m(TiO2)=15:85时, 以甲醇为牺牲剂的反应体系光催化制氢效果最好, 该复合材料具有一定的稳定性, 循环三次使用后仍然有一定的光催化制氢性能。  相似文献   

4.
两种半导体材料合成的复合材料由于电子亲合能和带隙宽度差形成了同型异质或异型异质结,利用异质结界面形成的费米能级效应可以提高界面载流子迁移率,从而有效改善气体传感器的气敏性能。本文采用自行设计开发的多层同轴静电纺丝装置,构筑了同轴异质复合纳米纤维In2O3/SnO2。所构筑的同轴异质复合纤维In2O3/SnO2外层较大的In2O3纳米颗粒附着在内层较小SnO2纳米颗粒表面,形成中空的分级纤维结构。同轴异质复合纤维In2O3/SnO2中由于存在大量的N-N同型异质结界面,电子迁移率增强,表面活性增强,吸附氧含量增加,对甲醛表现出良好的气敏性能。在250℃环境下,同轴复合纤维In2O3/SnO2气敏元件对50×10-6的甲醛响应为14.12,分别...  相似文献   

5.
采用溶胶-凝胶、质子交换和层状剥离的方法, 制备出金红石TiO2纳米片。利用X射线电子衍射谱(XRD)、透射电子显微镜(TEM)、紫外-可见吸收光谱(UV-Vis)、X光电子能谱(XPS)的价带谱和荧光光谱(PL)等对样品进行了表征, 研究了光生载流子的转移过程。结果证明: 金红石TiO2纳米片具有较大的比表面积(185.7 m2/g), 厚度约5 nm, 与金红石TiO2样品相比, 金红石TiO2纳米片的禁带宽度增加, 氧化还原能力增强; 此外, 纳米片结构能够促使光生载流子快速转移到纳米片的表面并产生有效分离, 阻止了光生电子和空穴的复合, 提高了光催化反应中光生载流子的利用率。金红石纳米片的这些特性导致其具有较高的光催化活性, 紫外光催化降解对氯苯酚的实验表明: 金红石TiO2纳米片的光催化活性高于金红石TiO2和锐钛矿TiO2样品。  相似文献   

6.
聚氯乙烯(PVC)在270℃真空环境中经热处理脱除HCl得到具有共轭结构的PVC衍生物(CDPVC)。纳米TiO2与CDPVC (质量比为2∶1)经高能球磨复合得到纳米TiO2/CDPVC复合材料。采用TEM、XRD、XPS、FTIR、SEM和Raman等对纳米TiO2/CDPVC复合材料进行了分析表征,并采用罗丹明B (Rh B)的光催化降解反应和K2Cr2O7的光催化还原反应评价其可见光催化活性及稳定性。结果表明,TiO2与CDPVC经高能球磨复合后形成了Ti—O—C结构,该结构有利于提高纳米TiO2/CDPVC复合材料的可见光吸收能力和光生电子/空穴分离效率。与纳米TiO2和普通研磨的TiO2-CDPVC相比,纳米TiO2/CDPVC复合材料具有较高的可见光催化活性和良好的可见光催化稳定性。其可见光催化机制是CDPVC吸收光子产生光生电子-空穴对,并容易将光生电子注入到TiO2的导带中,CDPVC内光生电子和TiO2导带上的光生电子(eCB-)被吸附在材料表面上的氧捕获产生·O2-自由基,·O2-自由基可以直接降解RhB分子,直至最后降解生成H2O和CO2。   相似文献   

7.
先用聚丙烯酰胺凝胶法制备出Bi2O3颗粒,然后用光还原法将粒径为6~18 nm的AuAg合金纳米颗粒修饰在Bi2O3颗粒表面,制备出AuAg/Bi2O3复合光催化剂。AuAg合金纳米颗粒的等离子体共振吸收效应(SPR)使AuAg/Bi2O3复合物能吸收波长为~577 nm的可见光,拓展了Bi2O3的光响应范围,还促进了Bi2O3中光生电荷的分离。以甲基橙(MO)、罗丹明(RhB)和铬离子(Cr(VI))作为目标反应物,在模拟太阳光和可见光照射下考察了AuAg/Bi2O3的光催化降解和还原活性,发现AuAg合金纳米颗粒修饰提高了Bi2O3的光催化性能。用模拟太阳光照射2 h后,RhB和MO的降解率以及Cr(VI)的还原效率分别提高了~34.2%,~38.0%和~56.7%。同时,AuAg/Bi2O3还具有良好的光催化和结构稳定性。基于以上结果,提出了AuAg合金纳米颗粒对Bi2O3光催化性能的改性机理。  相似文献   

8.
以钛酸丁酯为钛源,用醇热法制备了N、Fe单掺杂及共掺杂纳米TiO2。对样品的晶型结构、表面形貌、比表面积、紫外可见吸收、光致发光和分解水制氢催化性能分别进行了表征。结果表明,在500℃退火的N、Fe共掺杂TiO2样品均为锐钛矿相棱形纳米颗粒,分散性较好,平均粒径约20 nm;N、Fe共掺杂的摩尔分数分别为5.0%和2.0%时,样品具有良好的可见光吸收活性,对光的吸收从387 nm(未掺杂锐钛矿相TiO2)红移至510 nm处。主要原因可能是,N和Fe共掺杂在其禁带中产生杂质能级,导致其禁带宽度减小;N、Fe单掺杂及共掺杂改性,有效抑制了电子-空穴的复合,提高了光生载流子的分离效率;在可见光下(λ>400 nm)N、Fe共掺杂TiO2具有较高的光催化分解水制氢活性,氢气生成速率为299.2μmol·g-1·h-1。  相似文献   

9.
为开发一种高性能、可回收、低成本的光催化剂,本论文使用水热法制备了多孔结构的ZnO纳米片复合MoS2 (MoS2-ZnO)光催化材料。通过XRD、SEM、光致发光光谱(PL)、XPS等手段对样品的形貌、光学性质等进行了测试表征。结果表明,所制备的MoS2-ZnO样品为多孔片状结构;这种复合结构中MoS2不仅有助于增强ZnO中光生载流子的分离效率,而且还能增强可见光区的吸收,从而提高光催化和气敏性能。在模拟太阳光下,MoS2-ZnO纳米复合材料对高浓度(15 mg/L)的亚甲基蓝染液(MB)表现出较高的光催化降解活性。同时,MoS2-ZnO制备的气敏传感器对低浓度(2.05 mg/m3)NO2还具有较高的灵敏度。本工作为制备高效太阳能驱动的光催化剂和气体传感器提供了重要参考。  相似文献   

10.
以伊利石为载体、双氰胺(C2H4 N4)为类石墨氮化碳(g-C3N4)前驱体,采用液相浸渍-热聚合联合工艺制备出一种可见光响应的g-C3N4/伊利石光催化复合材料。利用XRD、FESEM、AFM、UV-Vis、BET及PL对样品的微观结构、界面特性及光学性能进行检测分析,同时考察g-C3N4/伊利石光催化复合材料在可见光照射下光催化降解环丙沙星(CIP)的效果。结果表明:相比纯g-C3N4,g-C3N4/伊利石复合材料在可见光下具有更高的光催化性能,其光催化速率是纯g-C3N4的11.26倍;伊利石与g-C3N4构成的复合结构能够有效地抑制光生载流子的复合,改善了纯g-C3N4材料的吸附性能和光催化活性。  相似文献   

11.
以聚丙烯腈基活性碳纤维(PAN-ACF)和SnCl2为原料, 采用溶胶-凝胶法制备PAN-ACF/SnO2复合材料并将其用作锂离子电池负极材料。采用X射线衍射仪(XRD)分析材料的组成及晶体结构; 用扫描电镜(SEM)观察样品形貌; 用热失重分析(TGA)对复合材料中SnO2的含量进行测定; 用恒流充放电、交流阻抗(EIS)和循环伏安(CV)对复合材料作为锂离子电池负极材料的电化学性能进行表征。结果表明, SnO2的含量对产物的形貌、结构和电化学性能有重要的影响。所制得的PAN-ACF/SnO2复合材料中SnO2 的晶格常数a=0.4739 nm和c=0.3181 nm, 为四方金红石结构。PAN-ACF表面在多次充放电过程中未发生明显变化。该复合材料用作锂离子电池负极材料时, 在电流密度为50 mA/g的条件下, SnO2含量为41.9%的复合材料首次放电高达1824 mAh/g, 20次后容量仍保持在450 mAh/g左右并趋于稳定, 呈现出良好的循环性能。  相似文献   

12.
利用同向平行双螺杆挤出机对纳米SiO2/低密度聚乙烯(LDPE)复合材料进行深度混炼,采用SEM、直流击穿强度试验及变温空间电荷试验研究了该工艺对纳米SiO2/LDPE复合体系中纳米SiO2颗粒分散性、直流击穿强度和空间电荷特性的影响,综合评估了纳米SiO2颗粒分散性改善和纳米SiO2/LDPE复合材料熔融状态下机械剪切降解对电性能的影响。结果表明,随着混炼次数的增加,纳米SiO2颗粒在LDPE中分散的更加均匀;深度混炼与单次混炼相比,SiO2/低密度聚乙烯复合材料直流击穿强度上升,室温下达到433.1 kV/mm;随着混炼次数的增加,SiO2/低密度聚乙烯复合材料低温时抑制空间电荷能力变强,但60℃以上高温时抑制能力变差。混炼次数的增加改善了纳米SiO2颗粒的分散性,使其与LDPE基体的界面增多,同时,纳米SiO2颗粒还使SiO2/低密度聚乙烯复合材料的片晶厚度增大,结晶度升高,界面区和力学性能都随着分散性改善而增加和增强,两者共同促进了SiO2/低密度聚乙烯复合材料电学性能的改善。但是由于深度混炼引发了材料降解,结构缺陷的增多影响了纳米SiO2/LDPE复合材料高温区的空间电荷抑制性能。  相似文献   

13.
为研究纳米颗粒增强铝基复合材料的高温蠕变特性,基于6063Al-Al2(SO4)3体系,采用超声化学原位合成技术,制备出不同Al2O3体积分数(5%、7%)的纳米Al2O3/6063Al复合材料,通过高温蠕变拉伸试验测试其高温蠕变性能,利用XRD、OM、SEM及TEM分析其微观形貌。结果表明:施加高能超声可显著细化增强体颗粒并提高其分布的均匀性,所生成的Al2O3增强颗粒以圆形或近六边形为主,尺寸为20~100nm;纳米Al2O3/6063Al复合材料的名义应力指数、表观激活能和门槛应力值与基体相比大幅提高,均随着增强体体积分数的增加而提高,表明纳米Al2O3/6063Al复合材料的抗蠕变性能提高;纳米Al2O3/6063Al复合材料的真应力指数为8,说明复合材料蠕变机制符合微结构不变模型,即受基体晶格扩散的控制;纳米Al2O3/6063Al复合材料的高温蠕变断口特征以脆性断裂为主,高应力下形成穿晶断裂,低应力下形成沿晶断裂和晶界孔洞;纳米Al2O3/6063Al复合材料的主要强化机制为位错强化与弥散强化。  相似文献   

14.
为了研究纳米复合介质的吸潮特性及其对介电性能的影响,应用Materials Studio仿真分析MgO及SiO2纳米粉末对水分子的吸附能,探讨了相关的吸潮机制及纳米MgO和纳米SiO2粉末的吸潮特性,对吸潮前后MgO/低密度聚乙烯(LDPE)和SiO2/LDPE复合介质介电性能的变化进行了试验研究。研究结果表明,水分子在氧化物表面的吸附点位主要是O原子,由于纳米SiO2属无定形,水分子可渗入SiO2纳米粒子内部与更多的O原子形成吸附作用,纳米SiO2具有更大的吸潮量。由于纳米MgO对水分子的吸附能大于纳米SiO2对水分子的吸附能,水分子更难被移除。纳米MgO/LDPE和纳米SiO2/LDPE复合介质较LDPE更易吸潮,其原因是纳米粒子吸附水分子能力较强所致。吸潮对MgO/LDPE和纳米SiO2/LDPE复合介质的介电性能有较大影响,吸潮后复合介质的电流密度值明显上升,水分子的存在可能破坏了原有界面区的紧密结构和荷电特性,削弱了复合介质对载流子迁移的抑制能力。当测试温度增加至60℃以上,受潮后复合介质吸附的水分子基本被移除,纳米MgO/LDPE和SiO2/LDPE复合介质的电流密度值恢复到同干燥试样的电流密度值基本一致。  相似文献   

15.
SiO2粒子经偶联剂γ-氨丙基三乙氧基硅烷(KH550)表面改性后,与木质纤维、聚氯乙烯(PVC)及其它助剂通过熔融混炼制备改性SiO2-木质纤维/PVC复合材料,用FTIR、SEM和同步热分析仪(STA)对SiO2粒子和SiO2-木质纤维/PVC复合材料的结构与性能进行测试与表征。FTIR分析表明,SiO2粒子表面接枝了KH550的特征官能团,KH550成功地接枝到SiO2粒子表面;SEM分析表明,改性纳米SiO2粒子能在木质纤维/PVC复合材料中均匀分散,其粒径在100 nm左右;添加改性的SiO2粒子后,木质纤维和PVC结合更加紧密,孔洞间隙减少。纳米SiO2质量分别占木质纤维质量的10%、8%和10%时,SiO2-木质纤维/PVC复合材料的弹性模量、拉伸强度、冲击强度分别达到最优值4.66 GPa、31.12 MPa和4.11 kJ/m2,与未添加SiO2的复合材料相比分别提高了50.29%、28.91%和16.65%。  相似文献   

16.
电极材料是影响超级电容器性能的主要因素。本研究采用溶剂热法合成石墨烯和氮掺杂石墨烯, 通过简单的化学法在其表面负载SnO2纳米粒子。利用刮涂工艺在FTO玻璃表面制备石墨烯、SnO2/石墨烯、氮掺杂石墨烯和SnO2/氮掺杂石墨烯薄膜, 并经400℃热处理。分别以制备的石墨烯基薄膜和PVA/H3PO4为电极和电解质组装对称型全固态超级电容器。测试结果表明, 与石墨烯相比, 氮掺杂石墨烯具有较大的晶粒尺寸、较高的比表面积和较高的超电容性能; SnO2纳米粒子负载可显著提高石墨烯和氮掺杂石墨烯的超电容性能。  相似文献   

17.
Thick film H2 sensors were fabricated using SnO2 loaded with Ag2O and PdOx. The composition that gave highest sensitivity for H2 was in the wt.% ratio of SnO2:Ag2O:PdOx as 93:5:2. The nano-crystalline powders of SnO2–Ag2O–PdOx composites synthesized by sol–gel method were screen printed on alumina substrates. Fabricated sensors were tested against gases like H2, CH4, C3H8, C2H5OH and SO2. The composite material was found sensitive against H2 at the working temperature 125 °C, with minor interference of other gases. H2 gas as low as 100 ppm can be detected by the present fabricated sensors. It was found that the sensors based on SnO2–Ag2O–PdOx nanocrystalline system exhibited high performance, high selectivity and very short response time to H2 at ppm level. These characteristics make the sensor to be a promising candidate for detecting low concentrations of H2.  相似文献   

18.
依次利用溶剂热法和原位沉积法制备了Ag@AgCl-Fe3O4/还原氧化石墨烯(rGO)复合材料,并对其进行结构和形貌表征。分别以罗丹明B(RhB)和Cd2+为研究对象,探讨了Ag@AgCl-Fe3O4/rGO复合材料吸附和可见光光催化印染废水中重金属离子和芳香族染料的性能,考察了Ag@AgCl-Fe3O4/rGO复合材料中rGO含量、与RhB共存的亚甲基蓝(MB)和Cd2+对RhB降解效果的影响;同时研究了溶液的初始pH值及与Cd2+共存的MB对Cd2+吸附效果的影响。结果表明:Ag@AgCl-Fe3O4/rGO复合材料对RhB的吸附量为47%,可见光照50 min的光催化降解率可达98%;Ag@AgCl-Fe3O4/rGO复合材料的吸附-光催化降解活性随rGO含量的增加而提高;废水中与RhB共存的MB使Ag@AgCl-Fe3O4/rGO复合材料对RhB的降解效率和循环性能受到一定抑制,而与RhB共存的Cd2+对RhB的降解效率和循环性能几乎没有影响。Ag@AgCl-Fe3O4/rGO复合材料对Cd2+也有良好的吸附性能,具有一定的pH值依赖性,在pH值为5时,复合材料对Cd2+的吸附量可达68 mg/g,但废水中MB染料的存在会抑制复合材料对Cd2+的吸附。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号