首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为探究蜂窝铝夹芯板的抗侵彻性能。对?6 mm钨球侵彻蜂窝铝夹芯板进行试验研究,得到弹道极限速度为169 m/s;为进一步比较侵彻蜂窝铝夹芯板抗侵彻规律,使用LS-DYNA进行数值模拟,将不同形状破片侵彻蜂窝铝夹芯板与间隔铝靶进行分析比较,并通过数值模拟与改进后的De Marre公式对2A12等效靶厚度计算结果进行对比分析,结果为:抗球形破片侵彻最差,夹芯层可增加靶板约18%的强度;数值模拟的等效2A12铝靶厚度为1.30 mm,理论计算为1.33 mm,相对误差在5%以内,可满足工程计算要求。研究结果可为反卫星和反航天目标战斗部的设计提供参考。  相似文献   

2.
为探究蜂窝铝夹芯板的抗侵彻性能。对?6 mm钨球侵彻蜂窝铝夹芯板进行试验研究,得到弹道极限速度为169 m/s;为进一步比较侵彻蜂窝铝夹芯板抗侵彻规律,使用LS-DYNA进行数值模拟,将不同形状破片侵彻蜂窝铝夹芯板与间隔铝靶进行分析比较,并通过数值模拟与改进后的De Marre公式对2A12等效靶厚度计算结果进行对比分析,结果为:抗球形破片侵彻最差,夹芯层可增加靶板约18%的强度;数值模拟的等效2A12铝靶厚度为1.30 mm,理论计算为1.33 mm,相对误差在5%以内,可满足工程计算要求。研究结果可为反卫星和反航天目标战斗部的设计提供参考。  相似文献   

3.
《中国测试》2016,(Z2):93-96
为提高装甲抗聚能射流侵彻性能,研究新型的泡沫铝填充装甲,运用ANSYS/LS-DYNA 3D有限元分析软件,对聚能射流侵彻泡沫铝填充装甲过程进行数值模拟,对比分析均质装甲和泡沫铝填充装甲的防护性能,结果表明:泡沫铝填充装甲较均质装甲有更好的防护性能。通过运用正交分析法研究前置靶板厚度、靶板材料、泡沫铝厚度、泡沫铝密度对装甲防护性能的影响,得到最优方案。研究结果对泡沫金属填充装甲的工程应用有一定的参考价值。  相似文献   

4.
为研究泡沫铝夹芯结构抗平头弹侵彻的理论分析模型,将弹体侵彻泡沫铝夹芯结构的过程分为三个阶段:前面板剪切失效、泡沫铝压缩剪切和后面板隆起开口。根据夹芯结构各组成部分的破坏模式,结合牛顿运动定律和能量守恒建立了各阶段的理论计算模型;通过理论计算模型分析了泡沫铝夹芯结构各组成部分在抗弹过程中吸能情况。结果表明,该理论模型计算结果与试验结果吻合良好,两者最大误差不超过10%。泡沫铝夹芯结构抗弹过程中,泡沫铝芯层吸能最多,占总吸能的48.9%;其次是后面板吸能,前面板吸能最少。前、后面板的吸能差别是因为两者在弹体侵彻过程中变形失效模式不同。  相似文献   

5.
为研究陶瓷材料应用到工程防护领域的抗侵彻性能。设计了3块陶瓷-活性粉末混凝土复合靶,利用直径125 mm的特制弹体对陶瓷-活性混凝土复合靶体进行DOP(Depth of Penetration)侵彻试验,得到了弹体的飞行姿态、着靶速度、破坏形态和靶体的侵彻深度、弹坑范围、破坏形态等试验参数,定性分析了陶瓷靶厚度和纤维层约束作用对复合靶体抗侵彻性能的影响;结果表明:陶瓷靶具有优良的抗侵彻性能,在低速(360~400 m/s)情况下对弹体能产生一定侵蚀作用;随着陶瓷靶厚度的增加,陶瓷靶的破坏形态由冲切贯穿型转变为变形凸起型破坏,耗能能力增加,复合靶体的整体抗侵彻能力增强;采用修正的别列赞公式对陶瓷靶的侵彻系数进行了初步分析,并计算了三种厚度陶瓷靶的质量防护系数和差分防护系数。结果表明,试验所用陶瓷靶的抗侵彻能力约为普通C40混凝土的4.9倍,从而为陶瓷材料在重要防护工程的推广使用提供参考。  相似文献   

6.
采用LS-DYNA非线性有限元软件对Ti/Al3Ti金属间化合物基层状(MIL)复合材料靶板的弹道侵彻过程进行了数值模拟。考察了等厚度下Ti体积分数、层数和材料梯度分布对复合材料抗侵彻性能的影响。结果表明,Ti体积分数约为20%时,靶板的抗侵彻性能最好。随着层数的增加,复合材料靶板的抗侵彻性能逐渐增强;但超过25层后,靶板的抗侵彻性能逐渐趋于稳定。不同铺层结构功能梯度板的抗侵彻性能相差较大,正向铺层梯度板的抗侵彻性能明显优于等厚均质复合材料靶板。  相似文献   

7.
为研究泡沫铝夹芯结构对油气爆炸冲击波的衰减性能及影响其性能的因素,设计一种试验测试系统。在模拟坑道内,点燃混合均匀的油气混合物获取爆炸荷载,并通过调节油气浓度比例来控制爆炸荷载大小,对油气爆炸荷载作用下泡沫铝夹芯结构的防护性能进行定量分析。结果表明,当泡沫铝芯层厚度≥10 mm时,泡沫铝夹芯结构对油气爆炸冲击波的衰减效果优于实体金属结构;泡沫铝夹芯结构对油气爆炸冲击波的衰减效果随芯层厚度的增加而提升,但衰减效率呈逐渐减小趋势,试验得出的芯层最优厚度下限为16 mm。  相似文献   

8.
根据防护要求和防护机制,设计了一种C/C-SiC陶瓷/铝基复合泡沫复合装甲。在确保复合装甲面密度为44 kg/m2的前提下,以弹击后剩余弯曲强度为评价标准,以陶瓷板布置位置、各组成层厚度、泡沫金属中泡沫孔径尺寸为研究因素,设计了三因素三水平的正交模拟优化方案,利用有限元软件ABAQUS模拟了子弹侵彻陶瓷靶板的过程及弹击损伤后复合装甲的弯曲实验过程,预测了剩余弯曲强度,并进行了结构优化。根据数值模拟结果制备陶瓷复合装甲试样,进行实弹打靶和弯曲实验以验证复合装甲试样剩余弯曲强度。结果表明,以MIL-A-46103E Ⅲ类2A级为防护标准,剩余弯曲强度最高的陶瓷复合装甲最优化结构形式为:陶瓷板厚度12 mm、陶瓷板做防弹面板、Al基复合泡沫孔径为4 mm+10 mm的混合;对剩余弯曲强度的主次影响因素排序为:陶瓷板厚度>陶瓷板布置位置>Al基复合泡沫孔径。  相似文献   

9.
为研究泡沫铝夹芯结构的不同组合形式在中低速FSP侵彻下的抗弹性能及破坏机理,开展了系列弹道试验,分析了夹芯结构的破坏模式,得到了前后面板厚度大小、后面板分层对夹芯结构抗弹性能的影响。研究结果表明:在中低速FSP侵彻下,泡沫铝芯材发生了胞壁的绝热剪切破坏,其背弹面发生明显的撕裂破坏;前面板发生绝热剪切破坏,弹孔周围产生明显的碟形弯曲变形;后面板发生塑性变形和拉伸破坏,后面板较薄时,还相应出现花瓣开裂现象。在总面密度相同的情形下,夹芯结构的后面板越厚,整体单位面密度吸能越高,抗弹性能越好;将后面板分层后,整体抗弹性能较不分层有所提高。  相似文献   

10.
SiCP/Al功能梯度装甲板抗侵彻性能的试验与数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
采用粉末冶金方法制备碳化硅陶瓷颗粒(SiCP)增强金属铝基复合材料板(MMCs), 并采用热压扩散法制备功能梯度装甲板(FGM)。利用高速冲击空气炮系统, 对纯铝靶板和两种不同铺层结构的功能梯度装甲靶板进行侵彻试验, 并利用LS-DYNA软件对侵彻试验过程进行数值模拟分析, 同时考察等厚、 等面密度下SiC颗粒分布对抗侵彻性能的影响。研究结果表明, 功能梯度板的抗侵彻性能比纯铝板好, 而两种不同铺层结构功能梯度板的抗侵彻性能相差不大。数值计算结果与现有试验结果取得了较好的一致, 说明了数值模拟的有效性。从数值计算结果可以看出, 层状功能梯度板比等厚、 等面密度均质复合材料靶板的抗侵彻能力好, 并可近似地认为等厚、 等面密度下多层功能梯度板的抗侵彻性能对颗粒分布不敏感。  相似文献   

11.
康建功  刘芳  马惠香 《爆破》2018,35(1):180-185
为了解泡沫铝衰减一维应力波特性,完善泡沫铝动力性能的理论体系。首先运用一维应力波理论及泡沫铝的力学特性,对应力波在泡沫铝中的传播规律及泡沫铝衰减应力波性能等问题进行了理论分析。然后基于SHPB(霍普金森压杆)技术,运用LS-DYNA对一维应力波在泡沫铝中的传播规律及泡沫铝衰减应力波特性进行了数值模拟研究。理论与数值模拟结果均表明:在应力波的传播路径上增加泡沫铝,应力波通过泡沫铝后,其应力幅值、波长、及应力幅值作用时间均发生明显的变化;在该条件下,增加5 mm厚的泡沫铝,一维应力波经过泡沫铝后,可以衰减掉未增加泡沫铝时应力幅值的39.9%,应力波由原来的矩形波变成三角形波,波长与持续时间也显著减小。同时,厚度对泡沫铝衰减应力波幅值具有较为明显的影响,相同能量的应力波通过泡沫铝材料厚度越厚,则应力波幅值衰减越明显;由此可知,泡沫铝用于防护冲击与爆炸荷载的缓冲吸能材料方面具有非常好的应用潜力。  相似文献   

12.
目的 为避免或减小高g值冲击对弹内轻质元器件的破坏,应加强对轻质元器件缓冲防护结构的研究。方法 基于新型复合泡沫和通孔泡沫铝的2种泡沫填充管,通过万能试验机和落锤冲击系统研究了2种泡沫填充管的静动态力学特性,并运用数值模拟方法研究高g值冲击下等质量的泡沫填充管与夹芯管的加速度缓冲效果和吸能机制。结果 数值模拟所得结构变形和落锤加速度与实验结果较为一致,验证了数值模拟方法的可靠性。复合泡沫平台应力具有显著的应变率效应,其填充管压溃载荷平稳且高于泡沫铝填充管,比泡沫铝填充管体现出更优异的高过载防护性能。等质量的泡沫夹芯管的抗冲击性能优于填充管,2种泡沫填充而成的夹芯管具有相似的高过载防护性能,泡沫材料压缩行为对夹芯管压溃载荷特征的影响低于填充管。结论 所得结果对轻质元器件的高g值缓冲防护有较强的指导意义。  相似文献   

13.
为比较系统地了解表面粘贴泡沫铝及其夹芯层对结构上作用冲击波峰值压力的衰减性能与影响因素,运用理论及数值模拟方法分析了泡沫铝及其夹芯层衰减冲击波峰值压力的性能。并讨论了影响泡沫铝及其夹芯层衰减冲击波峰值压力的几个主要因素。研究结果显示,在达到压实应变之前,表面粘贴泡沫铝及其夹芯层能有效地衰减冲击波的峰值压力。达到压实应变后,泡沫铝及其夹芯层对冲击波峰值压力的衰减性能下降。孔洞形式、相对密度对泡沫铝衰减冲击波峰值压力具有明显地影响,面板材料对泡沫铝夹芯层衰减冲击波峰值压力的性能也有一定的影响。要取得较好地衰减冲击波峰值压力的性能需综合考虑以上因素进行优化设计,否则可能出现粘贴的泡沫铝或其夹芯层达不到衰减结构上冲击波峰值压力的目的。  相似文献   

14.
The conventional manufacturing of composite sandwich structures is completed by adhesive joining separately prepared composite faces to cores. The joining process during sandwich fabrication is most difficult process, which requires strict quality control. The joining process can be eliminated when the sandwich structures are manufactured by co-cure method inside a mold using the large coefficient of thermal expansion (CTE) of foam cores.

In this work, the foam core composite sandwich beams were manufactured inside a mold using the pressure generated due to the difference of CTEs between the mold and the foam. Considering the non-linear thermal expansion properties of foam during co-cure manufacturing, the pressure generated inside the mold was analyzed and calculated. In addition, the calculated pre-compression strain was given to the foam core sandwich beams for enough consolidation of the composite faces.  相似文献   


15.
In this study, the Fiber-Metal Laminates (FMLs) containing glass fiber reinforced polypropylene (GFPP) and aluminum (Al) sheet were consolidated with Al foam cores for preparing the sandwich panels. The aim of this article is the comparison of the flexural properties of FML/Al foam sandwich panels bonded with various surface modification approaches (silane treatment and combination of silane treatment with polypropylene (PP) based film addition). The FML/foam sandwich systems were fabricated by laminating the components in a mould at 200 °C under 1.5 MPa pressure. The energy absorbtion capacities and flexural mechanical properties of the prepared sandwich systems were evaluated by mechanical tests. Experiments were performed on samples of varying foam thicknesses (8, 20 and 30 mm). The bonding among the sandwich components were achieved by various surface modification techniques. The Al sheet/Al foam sandwiches were also consolidated by bonding the components with an epoxy adhesive to reveal the effect of GFPP on the flexural performance of the sandwich structures.  相似文献   

16.
亓昌  杨丽君  杨姝 《振动与冲击》2013,32(13):70-75
采用动力显式有限元方法,以面比吸能和背板最大变形量为评价指标,研究了铝合金面板—梯度铝泡沫芯体—装甲钢背板夹层结构的抗爆性能。分析了芯体密度梯度排布对结构抗爆性能的影响,并与均匀密度铝泡沫夹层板进行了对比。同时,基于径向基函数建立了夹层结构抗爆性能预测响应面模型,在此基础上对夹层结构进行了多目标优化设计。结果表明,铝泡沫芯体相对密度排布顺序对夹层结构抗爆性影响明显;具有最佳芯体密度梯度排布的铝泡沫夹层结构的抗爆性能明显优于等质量的均匀密度铝泡沫夹层结构;多目标优化可进一步提高梯度铝泡沫夹层结构的综合抗爆性能。  相似文献   

17.
The structural response of dynamically loaded monolithic and sandwich beams made of aluminum skins with different cores is determined by loading the end-clamped beams at mid-span with metal foam projectiles. The sandwich beams comprise aluminum honeycomb cores and closed-cell aluminum foam cores. Laser displacement transducer was used to measure the permanent transverse deflection of the back face mid-point of the beams. The resistance to shock loading is evaluated by the permanent deflection at the mid-span of the beams for a fixed magnitude of applied impulse and mass of beam. It is found that sandwich beams with two kind cores under impact loading can fail in different modes. Experimental results show the sandwich beams with aluminum honeycomb cores present mainly large global deformation, while the foam core sandwich beams tend to local deformation and failure, but all the sandwich beams had a higher shock resistance, then the monolithic beam. For each type of beams, the dependence of transverse deflection upon the magnitude of the applied impulse is measured. Moreover, the effects of face thickness and core thickness on the failure and deformation modes were discussed. Results indicated that the structural response of sandwich beams is sensitive to applied impulse and structural configuration. The experimental results are of worth to optimum design of cellular metallic sandwich structures.  相似文献   

18.
Blast impact response of aluminum foam sandwich composites   总被引:1,自引:0,他引:1  
Military and civilian structures can be exposed to intentional or accidental blasts. Aluminum foam sandwich structures are being considered for energy absorption applications in blast resistant cargo containers, ordnance boxes, transformer box pads, etc. This study examines the modeling of aluminum foam sandwich composites subjected to blast loads using LS-DYNA software. The sandwich composite was designed using laminated face sheets (S2 glass/epoxy and aluminum foam core. The aluminum foam core was modeled using an anisotropic material model. The laminated face sheets were modeled using material models that implement the Tsai-Wu and Hashin failure theories. Ablast load was applied using the CONWEP blast equations (*LOAD_BLAST) in LS-DYNA. This paper discusses the blast response of constituent S2-glass/epoxy face sheets, the closed cell aluminum foam core as well as the sandwich composite plate.  相似文献   

19.
为改善气凝胶复合材料的承压能力,设计了一种纸蜂窝作为夹层,两侧复合气凝胶复合材料的夹层板,并探究该夹层板能否取代聚氨酯泡沫,应用于冷库墙体保温夹层.利用导热系数仪测得的试验数据,对纸蜂窝、气凝胶复合材料、气凝胶纸蜂窝夹层板的隔热性能进行了分析,讨论材料厚度对气凝胶蜂窝夹层板导热性能的影响.结果表明:纸蜂窝的厚度较小时,气凝胶纸蜂窝夹层板的导热系数均低于聚氨酯泡沫板;当纸蜂窝厚度为10 mm、孔径为6 mm,气凝胶复合材料厚度为10 mm或15 mm时,气凝胶纸蜂窝夹层板的导热系数低于0.03 W/(m·K),满足我国保温隔热行业材料的使用要求.  相似文献   

20.
A sandwich composite is typically designed to possess high bending stiffness and low density and consists of two thin and stiff skin sheets and a lightweight core. Due to the high stiffness-to-weight and strength-to-weight ratios, sandwich composite materials are widely used in various structural applications including aircraft, spacecraft, automotive, wind-turbine blades and so on. However, sandwich composite structures used in such applications often suffer from poor acoustic performance. Ironically, these superior mechanical properties make the sandwich composites “excellent” noise radiators. There is a growing interest in optimizing and developing a new sandwich composite which will meet the high stiffness-to-weight ratio and offer improved acoustic performance. The focus of this study is to investigate the structural–vibrational performance of carbon-fiber face sheet sandwich composite beams with varying core materials and properties. Core materials utilized in this study included Nomex and Kevlar Honeycomb cores, and Rohacell foam cores with different densities and shear moduli. The structural–vibrational performance including acoustic and vibrational damping properties was experimentally characterized by analyzing the wave number response, and structural damping loss factor (η) from the frequency response functions, respectively. It was observed that the relationship between the slopes of the wave number data for frequencies above 1000 Hz is inversely proportional to the core material’s specific modulus (G/ρ). The analysis also showed the importance of using a honeycomb core’s effective properties for equal comparison to foam-cored sandwich structures. Utilizing analytical modeling, the loss factors of the core materials (β) was determined based upon the measured structural loss factors (η) for a frequency range up to 4000 Hz. It was determined that low shear modulus cores have similar material damping values to structural damping values. However as the core’s shear modulus increases, the percent difference between these values is found to increase linearly. It was also observed that high structural damping values correlated to low wave number amplitudes, which correspond to reductions in the level of noise radiation from the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号