共查询到20条相似文献,搜索用时 15 毫秒
1.
基于无人机高光谱数据的玉米叶面积指数估算 总被引:1,自引:0,他引:1
无人机高光谱遥感是低成本、高精度获取精细尺度农作物生物物理参数和生物化学参数的新型手段,以此快速反演叶面积指数(Leaf Area Index, LAI)对作物长势评价、产量预测具有重要意义。以山东禹城市玉米为研究对象,利用PROSAIL辐射传输模型模拟玉米冠层反射率获取LAI特征响应波段结合相关性定量分析获取对LAI变化最为敏感的波段,并以此计算6种植被指数(Vegetation Index,VI),利用6种回归模型分别对单一特征波段和VI进行反演建模,以实测LAI评定模型精度。研究表明,光谱反射率中516、636、702、760和867 nm等波段对LAI变化最为敏感,以此建立的单一特征波段反演模型预测LAI精度R2为0.44~0.58;RMSE为0.16~0.18,其中636 nm建立的模型(LAI=21.86exp(-29.47R636))相比其他反演模型预测精度较高(R2=0.58,RMSE=0.16);6种植被指数与LAI高度相关,相关性系数R 2为0.85~0.86,以此建立的反演模型相比单一特征波段反演模型精度有所提高,R2为0.66~0.72,RMSE为0.12~0.14;其中mNDVI构建的LAI估算模型(LAI=exp(2.76~1.77/mNDVI))精度最高(R2=0.72,RMSE=0.13)。无人机高光谱遥感是快速、无损监测农作物生长信息的有效手段,为指导精细化尺度作物管理提供依据。 相似文献
2.
无人机高光谱遥感是低成本、高精度获取精细尺度农作物生物物理参数和生物化学参数的新型手段,以此快速反演叶面积指数(Leaf Area Index, LAI)对作物长势评价、产量预测具有重要意义。以山东禹城市玉米为研究对象,利用PROSAIL辐射传输模型模拟玉米冠层反射率获取LAI特征响应波段结合相关性定量分析获取对LAI变化最为敏感的波段,并以此计算6种植被指数(Vegetation Index,VI),利用6种回归模型分别对单一特征波段和VI进行反演建模,以实测LAI评定模型精度。研究表明,光谱反射率中516、636、702、760和867 nm等波段对LAI变化最为敏感,以此建立的单一特征波段反演模型预测LAI精度R2为0.44~0.58;RMSE为0.16~0.18,其中636 nm建立的模型(LAI=21.86exp(-29.47R636))相比其他反演模型预测精度较高(R2=0.58,RMSE=0.16);6种植被指数与LAI高度相关,相关性系数R 2为0.85~0.86,以此建立的反演模型相比单一特征波段反演模型精度有所提高,R2为0.66~0.72,RMSE为0.12~0.14;其中mNDVI构建的LAI估算模型(LAI=exp(2.76~1.77/mNDVI))精度最高(R2=0.72,RMSE=0.13)。无人机高光谱遥感是快速、无损监测农作物生长信息的有效手段,为指导精细化尺度作物管理提供依据。 相似文献
3.
叶面积指数(Leaf Area Index,LAI)是作物长势监测及产量估算的重要指标,准确高效的LAI反演对农田经济的宏观管理具有重要作用。研究探索了联合无人机激光雷达(Light Detection and Ranging,LiDAR)和高光谱数据反演玉米叶面积指数的潜力,并分析了LiDAR数据不同采样尺寸、高度阈值、点密度对LAI反演精度的影响同时确定三者的最优值。该研究分别从重采样的LiDAR数据和高光谱影像中提取了LiDAR变量和植被指数,然后基于偏最小二乘回归(Partial Least Square Regression,PLSR)和随机森林(Random Forest,RF)回归两种算法分别利用LiDAR变量、植被指数、联合LiDAR变量和植被指数构建预测模型,并确定反演玉米LAI的最优预测模型。结果表明:反演玉米LAI的最优采样尺寸、高度阈值、点密度分别为5.5 m、0.55 m、18 points/m2,研究发现最高的点密度(420 points/m2)并没有产生最优的玉米LAI反演精度,因此单独依靠增加点密度的方法提高LAI的反演精度并不可靠。基于LiDAR变量获... 相似文献
4.
玉米叶面积指数与高光谱植被指数关系研究 总被引:6,自引:0,他引:6
探讨以不同的植被指数建立的高光谱模型对玉米叶面积指数LAI的反演精度。实测不同水肥耦合作用下,玉米冠层的高光谱反射率与叶面积指数(Leaf Area Index)数据,采用高光谱红光波段(631~760 nm)与近红外波段(760~1 074 nm)逐波段构建NDVI、RVI、DVI、TSAVI、PVI植被指数,分别找出与LAI具有最佳相关性波段组合的植被指数,建立玉米LAI估算模型。结果显示,与LAI具有佳相关性的波段组合分别是NDVI(R760,R990)、RVI(R760,R1001)、DVI(R677,R1070)、TSAVI(R 760,R 975)、PVI(R658,R966),它们反演玉米LAI的确定性系数分别:R2>0.72、R2>0.74、R2=0.95、R2>0.79、R2>0.95。结果表明,在玉米的整个生长季的47个样本中,通过PVI和DVI方式建立的遥感估算模型能够较为准确地估算玉米LAI,TSAVI次之,NDVI、RVI稍差。 相似文献
5.
基于HJ星高光谱数据红边参数的冬小麦叶面积指数反演 总被引:1,自引:0,他引:1
针对我国HJ-1A星搭载的高光谱成像仪(HSI)数据,探索基于HJ星高光谱影像的LAI反演研究,本文利用inverted Gaussian模型提取红谷位置、红边位置、红边振幅以及红边斜率4个红边参数,结合2009年4月、5月两期同步地面观测LAI数据,经过回归分析构建了反演叶面积指数的最优红边参数模型.结果表明红边位置、红边斜率和红边振幅与叶面积指数都达到了极显著相关,R2分别为0.5592,0.7796和0.8107说明HJ星高光谱影像数据在叶面积指数反演方面有很大的应用潜力. 相似文献
6.
《遥感技术与应用》2017,(1)
叶面积指数定量遥感产品的真实性检验需要地面数据进行支撑。目前常用的叶面积指数测量仪器,如LAI2000、AccuPAR、Sunscan、Demon和TRAC等,需要工作人员进入样地进行手持测量,效率较低,人工测量引入的不确定性大。近年来基于无线传感器网络技术进行叶面积指数长时间自动观测取得了很多进展,但是投入成本大、移动不便等因素制约了其大范围应用。随着无人机的快速发展,利用无人机采集遥感数据具有极大的灵活性。本文利用轻型无人机获取了玉米地不同生长期的高分辨率光学影像,采用图像处理的算法进行植被与非植被的区分,最后利用辐射传输模型与聚集指数理论进行了叶面积指数反演。通过对比表明,在玉米成熟前期,反演得到的叶面积指数与LAI2200采集得到的数据,以及LI-3000C得到的真实叶面积指数有较高的一致性。基于无人机影像的LAI测量方法可作为一种快速准确的手段得以推广应用。 相似文献
7.
为研究倒伏胁迫下不同生育期LAI高光谱响应模型,提高LAI高光谱响应模型精度,获取不同生育期倒伏玉米LAI与冠层光谱反射率,采用6种传统变换方式对高光谱反射率进行处理,构建不同生育期倒伏玉米LAI分期与统一响应模型。研究结果表明:LAI能够直接反映玉米受倒伏胁迫程度及自身恢复能力;传统光谱变换有利于提高光谱同LAI的敏感性及模型响应精度;不同生育期倒伏玉米LAI分期响应模型优于统一响应模型。该结果可有效诊断倒伏胁迫下的玉米叶面积指数,为实现不同生育期倒伏玉米长势精确监测提供理论依据和技术支撑,对玉米倒伏胁迫灾情监测可提供必要的先验知识。 相似文献
8.
水稻叶面积指数的多光谱遥感估算模型研究 总被引:23,自引:0,他引:23
LAI是生态系统研究中最重要的结构参数之一,它是估计多种植冠功能过程的重要参数。通过两年的水稻田间试验,使用美国ASD背挂式野外光谱辐射仪(ASDFieldSpec),获取1999~2000年两年晚稻整个生育期的光谱数据,采用计算机测算图斑面积法测定LAI;根据已有的卫星传感器通道波段(MSS、RBV、SPOT、TM、CH)和它们的组合(比值植被指数、归一化差植被指数),以及具有物理意义的光谱区域(蓝区、绿区、黄边、红光吸收谷、红边、紫区、可见光区、近红外区、全部波段)等共有27个变量构建多光谱变量组,采用5个单变量线性与非线性拟合模型,用1999年试验数据为训练样本,建立水稻LAI的多光谱遥感估算模型。结果表明:适用于水稻LAI估算的多光谱变量是植被指数变量好于波段变量;RVI与NDVI比较,RVI好于NDVI。用2000年试验数据作为测试样本数据,对其精度进行评价和验证,非线性模型的精度高于线性模型的精度,其中以SPOT3/SPOT2为变量的对数模型,拟合R2与预测R2达到了最大,其RMSE和相对误差(%)为最低,因此,认为它是估算LAI的最佳模型。
相似文献
相似文献
9.
为研究倒伏胁迫下不同生育期LAI高光谱响应模型,提高LAI高光谱响应模型精度,获取不同生育期倒伏玉米LAI与冠层光谱反射率,采用6种传统变换方式对高光谱反射率进行处理,构建不同生育期倒伏玉米LAI分期与统一响应模型。研究结果表明:LAI能够直接反映玉米受倒伏胁迫程度及自身恢复能力;传统光谱变换有利于提高光谱同LAI的敏感性及模型响应精度;不同生育期倒伏玉米LAI分期响应模型优于统一响应模型。该结果可有效诊断倒伏胁迫下的玉米叶面积指数,为实现不同生育期倒伏玉米长势精确监测提供理论依据和技术支撑,对玉米倒伏胁迫灾情监测可提供必要的先验知识。 相似文献
10.
为研究倒伏胁迫下不同生育期LAI高光谱响应模型,提高LAI高光谱响应模型精度,获取不同生育期倒伏玉米LAI与冠层光谱反射率,采用6种传统变换方式对高光谱反射率进行处理,构建不同生育期倒伏玉米LAI分期与统一响应模型。研究结果表明:LAI能够直接反映玉米受倒伏胁迫程度及自身恢复能力;传统光谱变换有利于提高光谱同LAI的敏感性及模型响应精度;不同生育期倒伏玉米LAI分期响应模型优于统一响应模型。该结果可有效诊断倒伏胁迫下的玉米叶面积指数,为实现不同生育期倒伏玉米长势精确监测提供理论依据和技术支撑,对玉米倒伏胁迫灾情监测可提供必要的先验知识。 相似文献
11.
针对单源数据经验模型估算精度较低等问题,提出采用最小二乘法联合光学和雷达遥感数据构建联合估算模型,以中国科学院河北怀来遥感综合实验站为研究区,以夏季玉米为研究对象,利用Landsat8和Radarsat2影像实现研究区叶面积指数估算:首先分别建立了多光谱数据和雷达数据与实测叶面积指数之间的回归模型,然后利用最小二乘算法联合不同数据间的回归模型构建估算模型,最后利用迭代法估算叶面积指数并通过验证数据对估算结果进行评价分析,同时与单源数据经验模型、多源数据加权平均模型和基于物理模型查找表估算结果进行对比。通过对研究区59个样本点数据分析表明:基于最小二乘算法联合光学与雷达遥感数据能够提高叶面积指数的估算精度(R2=0.5442,RMSE=0.81),优于单源遥感数据拟合经验模型(DVI经验模型:(R2=0.485,RMSE=1.27))、基于权重的光学微波联合模型(R2=0.447,RMSE=1.36)和物理模型查找表法(R2=0.333,RMSE=1.36),并当叶面积指数大于3时,对其由于信息饱和或误差引起的低估或高估现象具有一定的抑制作用。 相似文献
12.
以东北主要绿化树种为研究对象,分别在长春市南湖公园和长春公园获取了共240组树冠高光谱反射率及相应的LAI数据。对数据进行相关分析,以确定反演LAI的敏感波段,而后分别运用6种植被指数、神经网络以及小波分析等3种方法进行估算。研究结果表明,3种方法估算树冠LAI都取得了较好的效果:①与RVI、NDVI相比,由DVI、RDVI、MSAVI、TVI等植被指数建立的估算模型可以提高LAI的估算精度;②神经网络在拟合光谱反射率与树冠LAI关系时明显优于植被指数法(R2达0.850);③小波能量系数与LAI相关性较好,单变量回归分析R2可达0.683,部分小波能量系数估算LAI的精度优于植被指数法,并且验证R2也较高,说明其稳定性较好,多元变量回归分析能够实现各小波能量系数间的优势互补,R2可达0.794。 相似文献
13.
目的 叶面积指数(LAI)是重要的植被生物理化参数,对农作物长势和产量预测具有重要研究意义。基于物理模型和经验模型的LAI估算方法被认为是当前最常用的方法,但两种方法的估算效率和精度有限。近年来,机器学习算法在遥感监测领域广泛应用,算法具有描述非线性数据拟合、融合更多辅助信息的能力,为了评价机器学习算法在玉米LAI遥感估算中的适用性,本文分析比较了随机森林和BP神经网络算法估算玉米LAI的能力,并与传统经验模型进行了比较。方法 以河北省怀来县东花园镇为研究区,基于野外实测玉米LAI数据,结合同时期国产高分卫星(GF1-WFV影像),首先分析了8种植被指数与LAI的相关性,进而采用保留交叉验证的方式将所有样本数据分为两部分,65%的数据作为模型训练集,35%作为验证集,重复随机分为3组,构建以8种植被指数为自变量,对应LAI值为因变量的RF模型、BP神经网络模型及传统经验模型。采用决定系数R2和均方根误差(RMSE)作为模型评价指标。结果 8种植被指数与LAI的相关性分析表明所有样本数据中,实测LAI值与各植被指数均在(P<0.01)水平下极显著相关,且相关系数均高于0.5;将3组不同样本数据在随机森林、BP神经网络算法中多次训练,并基于验证数据集进行估算精度检验,经验模型采用训练数据集建模,验证数据集检验,结果表明,RF模型表现出了较强的预测能力,LAI预测值与实测值R2分别为0.681、0.757、0.701,均高于BP模型(0.504、0.589、0.605)和经验模型(0.492、0.557、0.531),对应RMSE分别为0.264、0.292、0.259;均低于BP模型(0.284、0.410、0.283)和经验模型(0.541、0.398、0.306)。结论 研究表明,RF算法能更好地进行玉米LAI遥感估算,为快速准确进行农作物LAI遥感监测提供了技术参考。 相似文献
14.
针对高光谱数据众多波段间的多重共线性导致的维数灾难问题,为提升葡萄叶面积指数(leaf area index,LAI)的估算精度,提出一种基于敏感波段选择的长短时记忆神经网络(long short term memory,LSTM)估算模型。首先,采用无信息变量消除算法(uninformative variable elimination,UVE)剔除无关信息,以消除光谱波段间的多重共线性,降低光谱维度,提取葡萄LAI敏感波段;其次,采用TensorFlow深度学习框架构建LSTM神经网络模型。应用于陕西泾阳葡萄冠层光谱的LAI估算。结果表明:利用敏感波段构建的LSTM模型各项指标均优于偏最小二乘和支持向量机,其决定系数(R~2)、均方根误差(RMSE)和希尔不等系数(TIC)分别为0.963 5、0.074 5和0.025 4;基于原始光谱的LSTM模型的R~2、RMSE和TIC分别为0.881 0、0.117 0和0.039 8。UVE波段优选能够提升LSTM神经网络模型估算葡萄LAI的精度,对其他作物理化参量反演具有一定的指导意义。 相似文献
15.
《遥感信息》2015,(6)
针对用归一化差值植被指数(Normalized Difference Vegetation Index,NDVI)估算植被叶面积指数(Leaf Area Index,LAI)不仅需要大量地面LAI观测及其数据统计,且在植被NDVI饱和时难以估算LAI等问题,提出了一种基于数据挖掘技术的LAI遥感估算方法。该方法借助数据挖掘技术从有限的数据中挖掘和发现有用的信息,排除人为干扰,提高模型构建效率和精度。文中以安徽滁州地区杨树林为研究对象,获取研究区杨树林展叶期和花果期的HJ-CDD遥感影像,利用LAI-2000同步测量杨树林LAI;借助数据挖掘技术并基于杨树林展叶期和花果期估算的LAI值,通过筛选优化构建了杨树林生长过程中叶面积稳定期的LAI估算模型,并结合叶面积稳定期实测的LAI值验证表明该模型用于杨树林叶面积稳定期LAI估算的可靠性,为植被NDVI饱和时的LAI遥感估算提供了一种有效的思路和方法。 相似文献
16.
以ASD FieldSpec-Vnir光谱仪实测不同生长季大豆的冠层反射率,同期采集对应大豆LAI,然后逐波段分析冠层光谱反射率、导数光谱与大豆LAI的相关关系;并采用单变量线性回归逐波段分析了冠层光谱反射率、导数光谱与大豆LAI确定性系数随波长的变化趋势,建立了以近红外与可见光波段冠层光谱反射率的比值植被指数RVI与大豆LAI的高光谱遥感估算模型。结果表明,冠层光谱反射率在350 ̄680nm、760 ̄1050nm波谱区与大豆LAI相关性较大,而在红边区680 ̄760nm的相关性变化较大;导数光谱在红边区与大豆LAI相关程度高。通RVI方式建立的遥感估算模型能较为准确估算大豆LAI,通过对红外与蓝波段建立的RVI指数与大豆LAI的回归模型,表明其预测大豆LAI的能力较好,有进一步研究的必要;通过对比发现,神经网络模型可以大大提升高光谱反演大豆LAI的水平,模型的确定系数R2为0.9661,而总均方根误差RMSE仅为0.446m2.m-2。 相似文献
17.
叶面积指数(Leaf Area Index, LAI)是反映作物生长状态的重要指标,常用植被指数来反演。传统的反演模型大都是基于多变量的多元回归模型,而基于双变量的多元回归模型在LAI反演中的潜力还未被充分发掘。通过提取卫星影像的光谱特征和纹理特征,基于皮尔逊相关系数分析各个遥感特征与冬小麦LAI之间的相关性,利用简单回归模型(Simple Regression, SR)、多元线性回归模型(Multiple Linear Regression,MLR)和随机森林回归模型(Random Forest Regression,RFR)开展遥感特征与冬小麦LAI之间的关系模型构建反演研究,并结合精度指标(决定系数R2,均方根误差RMSE,相对均方根误差rRMSE)判定各反演模型的反演精度,以提出最优的反演模型。研究表明:(1)所有植被指数和部分纹理指数在反演LAI中取得了较好的反演效果(R2>0.6)。其中,通用归一化植被指数(Universal Normalized Vegetation Index, UNVI)在各植被指数中表现最好(R 相似文献
18.
叶面积指数(Leaf Area Index,LAI)是表征地表特征变化的重要指标之一,也是陆表、水文等模型的重要参数。本数据集是基于增强型时空自适应反射率融合模型(ESTARFM),将全球陆地表层卫星(GLASS)LAI(8d/500m)、中分辨率成像光谱仪(MODIS)MOD13A1和MYD13A1、陆地卫星Landsat-7 ETM+和Landsat-8 OLI数据,进行融合,得到8 d/30 m分辨率的LAI,通过分段线性内插最终得到巴音河流域高时空分辨率LAI(1 d/30 m)。对比高时空分辨率LAI(1 d/30 m)与GLASS LAI产品的时空特征,验证数据集精度。结果表明:与原始GLASS LAI相比,本数据集在空间上具有与GLASS LAI一致的分布特征,且轮廓与纹理更为清晰。在时间上,二者具有相同的月际变化特征,且由1 d/30 m LAI估算的区域月平均LAI和区域8日平均LAI与原始GLASS LAI存在显著正相关性,R2分别为0.95、0.94,Pearson积矩相关系数均为0.97,P值均小于0.01。此数据集可为陆表过程、水文循环等模拟提供重要的数据支持... 相似文献
19.
地形效应会使遥感影像中的地表反射率发生畸变,进而影响基于反射率估算的叶面积指数(Leaf Area Index,LAI)精度。为了减弱或消除地形对LAI反演的影响,基于三维辐射传输模型DART(Discrete Anisotropic Radiative Transfer)构建坡地反射率与LAI数据集作为训练数据。以反射率为输入,LAI为输出,利用随机森林算法进行训练,构建山地LAI反演模型。结合实际遥感影像数据实现山地LAI的估算,并利用实测数据对反演结果开展精度评价。同时,基于DART模型和随机森林构建了平地LAI反演模型作为参照以评价本文发展方法的有效性。结果表明:考虑了地形影响的山地LAI反演模型具有较强的估算能力,验证结果的精度(决定系数(R2)=0.57,均方根误差(RMSE)=0.77 m2/m2)优于平地反演模型(R2=0.46,RMSE=0.86 m2/m2);基于DART模型构建的山地反演模型能够捕捉到坡度和坡向对地表反射率的影响,其反演结果较好地还原了研究区LAI的空间分布,与地面真实情况接近。研究... 相似文献
20.
基于TM遥感数据的西藏林芝地区叶面积指数反演 总被引:5,自引:1,他引:4
叶面积指数(LAI)是分析冠层结构最常用的参数之一,它控制着植被的生物、物理过程,如光合、呼吸、蒸腾、碳循环和降水截获等。但是通过野外实测获取大面积的LAI比较困难,通过对西藏林芝地区的TM遥感数据进行处理获取各种植被指数,然后分别与实测LAI建立相应的回归关系,并对不同的回归模型进行分析找出相关性较好、误差较低的回归模型,最后利用该模型对林芝地区的叶面积指数进行制图。通过植被指数与实测LAI进行回归分析建立LAI估算模型,其决定系数最高为R2=0.653,具有较好的相关性。研究结果表明:TM遥感数据可以实现林芝区域LAI估算,能为生态环境研究提供数据支持。 相似文献