首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 本文构建了一种分子印迹电化学传感器用于孔雀石绿的快速测定。方法 首先采用一步合成法制备纳米复合材料PMo12-PDA/RGO,并对其进行了红外光谱和扫描电子显微镜表征。然后,以邻苯二胺(OPD)为功能单体,孔雀石绿(MG)为模板分子,采用电聚合方法在PMo12-PDA/RGO修饰的电极表面制备印迹膜,采用循环伏安法进行洗脱,从而制备得到传感器。对纳米材料的滴涂量、印迹圈数、洗脱剂类型、孵育时间和缓冲液pH进行优化。结果 在最优实验条件下,孔雀石绿溶液的浓度在0.10~15.0 nmol/L范围内与电流的变化值呈良好的线性关系,线性方程为ΔI=0.5647x+4.0024,R2=0.9916,该方法的检出限为5.47×10-11 mol/L(S/N=3)。结论 该传感器可用于养殖水样中痕量孔雀石绿的检测,加标回收率为95.74~113.21%。  相似文献   

2.
分子印迹膜作为一种人工抗体可以特异性的识别目标物从而提高传感器的选择性。在本文中,选用简便的电化学聚合法制备沙丁胺醇(sal)的分子印迹膜,构建一种灵敏度高、选择性好的电化学传感器。该实验首先通过恒电位沉积法(﹣0.2V)将纳米金粒子原位沉积到玻碳电极表面(制得AuNPs/GCE),接下来,利用循环伏安法(CV)将功能单体邻苯二胺与sal电聚合在AuNPs/GCE表面,制备分子印迹聚合物膜。随后,使用0.5 M H2SO4洗脱分析印迹膜10 min后,得到沙丁胺醇分子印迹电化学传感器(Sal-MIP/AuNPs/GCE)。结果表明,该传感器对sal的响应范围为1×10-11~1×10-6mol/L,检出限为1×10-11 mol/L。其线性方程为△IP(μA)=34.079+2.9048lgc(mol/L),相关系数(R2)为0.9911,且具有较好的选择性。将此传感器应用于新鲜猪肉中sal的快速检测,采用加标回收法验证传感器的性能,发现该方法的回收率为94.41%~107.03%,相对标准偏差(RSD)为2.1~3.5%,有较好的应用价值。  相似文献   

3.
赵畅  余波  陈振兴  晋冠平 《食品科学》2012,33(4):214-218
采用电化学法在充蜡石墨电极上,原位修饰了一种基于三聚氰胺/纳米银/聚槲皮素的类分子印迹-纳米多孔膜。场发射扫描电镜、X-射线光电子能谱、红外光谱和电化学验证了该类分子印迹-纳米多孔膜为三维网状结构。该纳米多孔膜修饰电极对三聚氰胺显示良好的选择性富集作用,氧化峰(0.17V)电流和三聚氰胺的浓度在1×10-7~1×10-5mol/L范围内,呈良好线性关系,检出限为1×10-8mol/L(3σ)。该修饰电极有较好的抗干扰能力,可用于牛奶样品中三聚氰胺的测定。  相似文献   

4.
聚吡咯修饰生物传感器的制备及应用   总被引:3,自引:0,他引:3  
用电化学方法制备了聚吡咯-抗坏血酸传感器,研究了传感器制制备的条件,表征了传感器的电化学行为特征及其对抗坏血酸的Nernst响应特性。传感器对抗坏血酸 Nernst响应线性范围为5.0*10^-1-5.0*10^-8mol/L,为57.5mV/PVc,检测下限为1.0*10^-8mol/L。电极的稳定性好,响应快、,寿命较长。可用于饮料中抗坏血酸含量的测定。  相似文献   

5.
目的:建立一种简单、快速的灵芝酸A(GAA)分析方法.方法:以GAA为模板分子,以邻苯二胺为功能单体,在玻碳电极上采用循环伏安法电聚合制备能特异性识别GAA的分子印迹聚合物(MIP).采用红外光谱、扫描电镜、电化学方法对MIP的结构、形貌和电化学行为进行表征.以[Fe(CN)6]3-/4-为活性指示剂,考察传感器对GAA的分析性能.采用一步电聚合法可在电极表面制备多孔GAA分子印迹聚合物.结果:在1.0pmol/L~1.0μmol/L范围内,[Fe(CN)6]3-/4-的电化学信号与GAA浓度对数呈良好的线性关系,检测限为0.21pmol/L.灵芝粉乙醇和水溶解液中GAA测定值分别为1.15nmol/L和3.00pmol/L.结论:该分子印迹电化学传感器可用于灵芝粉浸出液中GAA的快速、灵敏检测.  相似文献   

6.
赵玲钰  高林  庞军  高文惠 《食品科学》2017,38(8):283-289
以胺菊酯为模板分子,邻氨基苯酚为功能单体,通过循环伏安法在玻碳电极表面电聚合一层带有特异选择性能的胺菊酯分子印迹膜,构建一种能够快速检测样品中胺菊酯的分子印迹电化学传感器。实验应用非常规去除模板分子的方法即电位诱导法,选择铁氰化钾为电活性探针,采用循环伏安法和差分脉冲伏安法优化传感器的制备方法与检测条件,研究传感器的印迹效应和分析性能,并将该传感器用于食品中胺菊酯残留的快速检测。结果表明,电位诱导法较传统的浸泡洗脱法去除模板分子的效果好,胺菊酯浓度与其差分脉冲伏安电流差在0.2~10μmol/L范围内线性关系良好,检出限为0.07μmol/L,样品加标平均回收率在82.9%~98.2%之间。该传感器检测胺菊酯操作简单、响应迅速、灵敏度高、稳定性和选择性好、抗干扰能力强、检测成本低,具有良好的应用前景。  相似文献   

7.
以农药多菌灵为模板分子、吡咯为功能单体,采用电化学聚合法在玻碳电极(GCE)表面合成多菌灵分子印迹聚合物(MIP),构建多菌灵分子印迹电化学传感器。通过对多菌灵与吡咯的比例关系、循环伏安法扫描条件、洗脱和重结合时间等进行优化选择,得到传感器构建的最佳实验条件。配制多组多菌灵标准溶液并用该传感器进行测定,绘制标准曲线。结果说明:多菌灵分子印迹电化学传感器可以迅速、灵敏、准确地检测出多菌灵,最低检出限为2.13×10-8mol/L,为多菌灵农药残留的快速、灵敏测定提供了新思路。  相似文献   

8.
分子印迹技术是一种可以特异性地从样品中将待测物分离和富集,降低样品中复杂基质对待测物检测结果的干扰,提高仪器检测精度的前处理技术,现已广泛应用于动物性食品中的兽药残留检测领域。磺胺类抗生素作为最常被检出的兽药之一,其检测方法的优化有着重要研究意义。本文聚焦了近年来磺胺类抗生素分子印迹技术的发展趋势,包括新型功能单体、交联剂和致孔剂的选用,聚合方法的优化以及其应用模式从传统固相萃取材料到快速检测产品的转变,阐述了该技术的优势和目前存在的问题,为磺胺类抗生素分子印迹聚合技术的发展提供参考。  相似文献   

9.
分子印迹技术是人工合成对印迹分子具有专一识别能力聚合物的技术。综述了2001年至今主要相关文献,总结了近两年分子印迹技术所取得的最新成就,介绍了目前分子印迹技术发展中存在的问题,并对分子印迹技术的研究及应用前景作出了展望。  相似文献   

10.
目的制备分子印迹聚合物,为敌百虫的分离富集提供参考。方法以敌百虫为模板,3-氨基三丙基乙氧基硅烷(3-aminotripropylethoxysilane,APTES)为功能单体,正硅酸乙酯(ethyl orthosilicate,TEOS)为交联剂,采用溶胶-凝胶法制备分子印迹聚合物。将制备的印迹聚合物作为固相萃取填料应用于实际样品中敌百虫的分离富集,结合高效液相色谱法(high performance liquid chromatography,HPLC)对白菜、甘蓝、西红柿中的敌百虫含量进行测定。结果该方法可有效去除基质干扰,检出限为0.92μg/kg,回收率在87.66%~100.0%之间,RSD≤4.5%。结论本实验为实际样品的前处理提供了新思路,为敌百虫的检测发展了新方法,有望广泛应用于实际样品中敌百虫的分离检测中。  相似文献   

11.
目的:快速检测食品中噻菌灵残留量。方法:通过紫外光谱法筛选邻氨基苯酚和邻苯二胺作为复合功能单体,采用电化学分析法研究了聚合条件、洗脱条件,对传感器性能进行了评价,建立了食品中噻菌灵残留的快速检测方法。结果:在最佳条件下,该印迹传感器对噻菌灵及其结构类似物具有特异吸附性能,且对噻菌灵的选择性最强;该方法的线性范围在1×10-8~1×10-4 mol/L,检出限为3.3×10-9 mol/L,样品加标平均回收率为88.16%~100.73%,相对标准偏差(RSD)≤2.63%。结论:该传感器具有优异的印迹效应以及良好的选择性、重现性与稳定性,可用于食品中噻菌灵残留的快速检测。  相似文献   

12.
本文以柠檬酸为碳源合成了荧光量子点(CQDs);以呋喃妥因(NFT)为模板分子,甲基丙烯酸为功能单体,正硅酸乙酯为交联剂,乙腈为致孔剂,合成了呋喃妥因分子印迹聚合物(NFT-CQDs-MIP)。用红外光谱法、扫描电镜和荧光光谱法对NFT-CQDs-MIP进行了表征。实验结果表明,NFT-CQDs-MIP对NFT有较好的特异性识别能力,适用于模拟环境水体中NFT的检测。  相似文献   

13.
为了快速、简便、高效地从生姜中分离6-姜酚,将模板分子(6-姜酚)、功能单体、交联剂、引发剂和溶剂加入反应釜中混合均匀,超声脱气15 min后再通入N2(1 mL/min),然后于60℃恒温水浴密封反应20h。得到带有模板分子6-姜酚的分子印迹聚合物,将其研磨过80目筛,得均匀带有模板分子的分子印迹聚合物颗粒。用体积分数95%乙醇洗脱出模板分子6-姜酚,得到用于提取6-姜酚的分子印迹聚合物。利用该聚合物可以制造90%以上纯度的6-姜酚产品。  相似文献   

14.
丁同英  袁航 《食品与机械》2021,37(12):197-201
文章综述了分子印迹传感器(MIS)的工作原理及分类,着重介绍了MIS在真菌毒素检测方面的研究成果和应用现状,并对其未来发展方向进行了展望。  相似文献   

15.
利用电化学传感技术,对水样中的组胺进行检测,为研发相应的食品快检技术与设备提供技术基础。在金电极上制备分子印迹膜,应用电化学进行表征,建立电化学检测组胺的方法。该方法检出限:0.5ng/mL,检测范围:0.5ng/mL~50 ng/mL,检测时间30 min。所建立的方法对于检测水样的组胺具有灵敏度高、准确度好和精密度高。  相似文献   

16.
分子印迹聚合物与表面等离子共振传感器相结合,可用于分子间相互作用和结合特性的研究。该文综述基于分子印迹的表面等离子共振传感器的原理和技术优势,总结食品中农兽药残留、生物毒素以及其他污染物检测的最新研究进展,展望其在食品安全检测中的发展前景,为其开发和应用提供研究思路和理论参考。  相似文献   

17.
以尼泊金乙酯(EP)为模板分子,邻苯二胺(o-PD)为功能单体,利用循环伏安法在玻碳电极(GCE)表面制备分子印迹膜,对分子印迹聚合条件进行了优化,并进一步在双通道丝网印刷碳电极(SPCE)表面进行电聚合,制得双通道尼泊金乙酯分子印迹膜电极(EP-MIP/SPCE)。利用循环伏安法、方波伏安法和电流-时间曲线法对分子印迹传感器的电化学性能进行评价。EP在双通道EP-MIP/SPCE上的氧化电流与EP在低浓度区(3.2×10~(-7) mol/L~3.2×10~(-6) mol/L)和高浓度区(2.7×10~(-5) mol/L~5.6×10~(-4) mol/L)分别呈良好的线性关系,检出限为9.7×10~(-8) mol/L。运用建立的方法对市售酱油中的EP进行了测定,加标回收率为97.2%~106.6%,实验结果表明,该双通道分子印迹传感器可对酱油等食品样品中的尼泊金酯类进行快速测定。  相似文献   

18.
目的 将分子印迹技术、电化学技术和纳米颗粒修饰技术相结合,开发蔬菜中吡虫啉快速检测技术。方法 采用金纳米颗粒修饰玻碳电极提高其电子转移速率, 通过分子印迹技术在电极表面聚合膜材料制备电化学传感器,利用循环伏安法和差分脉冲法表征传感器性能,基于传感器对目标农药分子的特异性吸附建立农药快速检测方法。结果 以吡虫啉为模板分子,邻苯二胺为功能单体,基于金纳米颗粒修饰的玻碳电极构建了一种吡虫啉分子印迹电化学传感器,该传感器可实现对吡虫啉的特异性识别检测,在1.0×10-11~1.0×10-4 mol/L浓度范围内,吡虫啉线性关系良好,相关系数为0.9951,检出限 为3.3×10-12 mol/L,小白菜样品加标回收率为91.86%~102.25%,相对标准偏差为1.98%~3.19%。结论 本研究制备的传感器具有优良的选择性、重复性和稳定性,适用于蔬菜中吡虫啉的快速检测,为当前农残速测产品的开发提供了参考。  相似文献   

19.
电聚合制备三聚氰胺分子印迹QCM传感器薄膜及其表征研究   总被引:1,自引:0,他引:1  
通过研究得出,在聚合电压U为0~1.6V、聚合段数为22、模板三聚氰胺(MEL)浓度为4mmol/L、单体甲基丙烯酸(MAA)浓度为10mmol/L、成膜剂邻苯二胺(o-PD)浓度为18mmol/L条件下,以pH 8.0的BR缓冲液作为溶剂和电解液,用电聚合方法,直接在石英晶体微天平(QCM)传感器电极上修饰的分子印迹薄膜,其对目标分子MEL具有良好的频率表征效果,频移值为59Hz.通过相同3个修饰电极的频率表征变化来看,电极对目标分子的识别表征极不稳定.这与手动进样方式、环境较大噪声和电极本身差异密切相关,难以建立对目标分子的标准曲线(r=0.966)实现准确定量分析.  相似文献   

20.
目的 制备双酚A(bisphenol A, BPA)磁性分子印迹聚合物(magnetic molecularly imprinted polymer, MMIPs)并研究其吸附性能和在奶粉检测中的应用。方法 以双酚A为模板分子,以3-氨丙基三乙氧基硅烷(APTES)为功能单体,采用反向微乳法和表面印迹技术制备了核壳型SiO2包裹Fe3O4 磁性分子印迹聚合物(Fe3O4@SiO2 MMIPs),并对其进行透射电镜、扫描电镜、傅里叶变换红外光谱、X射线衍射、热重分析和振动样品磁强计表征,并研究Fe3O4@SiO2 MMIPs的吸附性能和在奶粉检测中的应用。结果 制备出的双酚A磁性分子印迹聚合物选择性好,吸附性能好,结合高效液相色谱法,成功应用于奶粉中双酚A的检测。双酚A在5~200 μg/kg 范围内呈现良好的线性关系, 定量限为1.67 μg/kg,回收率为89.9%~92.3%,日内、日间精密度均小于4.0%。结论 Fe3O4@SiO2 MMIPs是一种较好的双酚A富集材料,可用于奶粉中双酚A检测的前处理工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号