首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究华北平原PM2.5、PM1.0的污染特征,于2014年10月至2016年6月在济南城区使用中流量采样器对大气颗粒物样品进行采集,利用离子色谱、碳气溶胶分析仪测定了颗粒物中的水溶性无机离子成分和碳组分。结果表明:济南城区冬季大气细颗粒污染较重,二次离子SO42-、NO3-和NH4+是PM2.5、PM1.0最主要的水溶性无机离子,且更易富集在PM1.0中。有机碳和元素碳的质量浓度表现为春夏低,秋冬高;二次有机碳的质量浓度在冬季明显升高,且大多分布在粒径>1 μm的颗粒物中。72 h后向气流轨迹表明,来自河北、内蒙古的长距离传输与山东地区的局地传输对济南大气中PM2.5和PM1.0的离子质量浓度有重要影响。济南冬季的消光系数高达789.13 Mm-1, PM2.5中的二次粒子NH4+、SO42-和NO3-与消光系数的相关性较高,是使大气能见度降低的主要因素。  相似文献   

2.
典型城市夏季碳组分污染特征与来源解析   总被引:2,自引:0,他引:2  
为了研究京津冀地区典型城市PM2.5及其碳组分的污染特征和来源,选取北京和唐山具有代表性的5个监测点于2012年7月3日至30日进行了PM2.5样品采集.分析研究了PM2.5、有机碳(OC)和元素碳(EC)的质量浓度及变化特征,采用OC/EC最小比值法估算了二次有机碳(SOC)的质量浓度,并使用因子分析法解析了碳组分来源.结果表明:采样期间北京市PM2.5、OC和EC质量浓度分别为76.2±38.5μg/m3、7.0±2.2μg/m3和3.0±1.4μg/m3,均低于唐山的97.7±38.8μg/m3、11.7±6.3μg/m3和7.0±5.0μg/m3;北京灰霾天气PM2.5、OC和EC浓度分别为非霾天气的2.0、1.2和1.8倍,唐山相应为1.4、1.5和1.6倍;北京和唐山SOC质量浓度分别为3.0μg/m3和5.1μg/m3,分别占OC质量浓度的42.9%和43.6%;北京和唐山PM2.5中碳组分主要来源于燃煤和机动车尾气,其贡献量均超过75%,因此要进一步加强清洁能源替代、控制机动车保有量的增长及提高车用油质量.  相似文献   

3.
在2012年秋季选取天气状况相对稳定的12d,运用细颗粒化学组分在线观测仪(ACSM),观测西安大气颗粒物变化;利用正矩阵因子分析法(PMF)对大气细颗粒物中的有机物进行源解析,探讨其对能见度的影响;最后,结合IMPROVE公式中吸湿增长因子和多元线性回归统计方法重建散光系数。结果表明:在观测时段,PM1(不包括黑碳和矿尘等难熔组分)和PM2.5质量浓度时间序列的相关性较好(判定系数为0.67),PM1 约占PM2.5质量浓度的60%,有机物约占PM1 质量浓度的58%,其他组分(包括SO24- ,NO3- ,NH4+ 和Cl- )约占42%;高相对湿度(大于85%)伴随着一次组分质量分数的增加,雨水对一次组分的湿沉降作用也更加明显;利用正矩阵因子分析法对有机物进行源解析,分解出烃类有机气溶胶(HOA)和氧化性有机气溶胶(OOA)两种组分;OOA 约占有机物质量浓度的54%,HOA 约占46%,并且在下午时段,HOA 发生挥发,经过光化学反应快速转化为OOA;硝酸盐对光的散射贡献最大。  相似文献   

4.
基于2017年12月25日至2018年1月16日1 h时间分辨率的在线监测数据,对华南沿海城市——阳江市的大气PM2.5质量浓度、化学组分和来源进行了分析.结果表明,采样时段阳江市PM2.5中主要化学组分为OM、NO3-、SO42-、NH4+和EC,质量浓度占比分别为32.75%、25.59%、16.41%、12.37%和4.82%.相比清洁过程,两次污染过程期间NO3-质量浓度均为清洁过程时段的6倍以上,增量明显高于其他组分,占比则均为清洁过程时段的2倍以上,分别占29.38%和30.81%.PMF解析结果表明,二次转化源是最主要的源,其分担率高达51.41%,其中NOx二次转化源分担27.18%,是阳江市PM2.5分担率最大的二次转化源.首要的一次排放源是机动车源(15.11%).污染过程期间NOx二次转化源的分担率显著提...  相似文献   

5.
NO-2是一种致癌物质,其在河流中累积会给人们的健康带来巨大风险。沙颍河为淮河最大的支流,氮污染非常严重,探析沙颍河水体氮污染特征,不仅关系到沙颍河氮污染问题的解决,更关系到当地居民的健康。课题组于2015年5—12月对沙颍河干支流水体中各种形态的氮及相关环境因子进行分析测定,利用Pearson相关分析探讨了各环境因子对氮形态组成时空变化特征的影响,分析了各类氮污染物(有机氮、游离NH3、NH+4和NO-3)及环境因子对NO-2累积的影响。结果表明:沙颍河水体总氮(TN)污染最为严重(质量浓度为0.4~13.2 mg/L,均值为7.6 mg/L),大部分采样点5—12月TN均超过国家地表Ⅴ类水标准;7—8月NH+4、NO-3污染较轻,未超过国家地表Ⅴ类水标准(2 mg/L);11—12月污染严重,NH  相似文献   

6.
为全面了解杭州市PM2.5中水溶性离子的污染特征及其来源,于2014年10月—2015年9月在杭州市2个采样点采集了PM2.5样品,运用离子色谱法对PM2.5中的水溶性离子进行了分析.结果表明:PM2.5中9种水溶性离子的年均质量浓度为46.63μg/m3,占PM2.5质量浓度的54.97%.主要离子Cl-,NO3-,SO42-,NH4+质量浓度季节变化明显,表现为冬季>秋季>春季>夏季.SOR值和NOR值说明杭州市大气中二次颗粒明显存在,并且SO2的二次转化率大于NO2的二次转化率.因子分析表明:二次气溶胶、道路扬尘、建筑扬尘和工业排放是采样期间杭州市PM2.5的主要来源.  相似文献   

7.
通过采集北京城区2015年冬夏季代表月1月和7月大气细颗粒物PM2.5样品,结合相关气象数据,分析研究了北京城区冬夏季PM2.5及其中有机碳(OC)和元素碳(EC)的质量浓度变化和污染特征.利用ρ(OC)/ρ(EC)最小比值法估算了二次有机碳(SOC)质量浓度,并采用后向轨迹模型和聚类分析法,研究了气团传输对灰霾形成的影响.结果表明,PM2.5和含碳气溶胶质量浓度表现为冬季夏季,霾日非霾日.SOC是OC的重要组成部分,冬季占OC质量浓度的47.16%,夏季达55.54%.北京市冬季霾日的气团轨迹主要为西北高空气团和局地气团,其中来自京津冀周边的局地气团传输对灰霾污染有较大贡献;夏季霾日的气团轨迹主要为东南气团、西北气团和西南气团,其中来自南方的气团轨迹所占频率较高,对灰霾污染贡献较大.因此加强京津冀及周边地区大气污染治理联防联控,对北京市空气质量改善具有重要意义.  相似文献   

8.
利用延吉市城区3个空气质量监测站2015年PM2.5浓度小时数据,探讨了延吉市城区PM2.5时空分布特征,并将PM2.5浓度与气象要素做相关性分析.研究结果表明: ①延吉市PM2.5季节浓度由高到低依次为冬季、秋季、春季和夏季.②延吉市PM2.5月均浓度变化均呈单峰单谷型,其中11月、12月、1月浓度值相对较高,2月开始逐月递减至10月份后开始回升.③PM2.5日均浓度曲线呈现出尖峰和深谷交替变化的锯齿状.④延吉市城区3个监测点PM2.5浓度日变化在春季、夏季、秋季和冬季都呈现双峰双谷型.⑤PM2.5浓度与气压、气温日较差、风速、相对湿度等气象要素之间存在显著地相关性.  相似文献   

9.
为研究北京市采暖期PM2.5中有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)的污染特征和来源,于2011年12月至2012年2月在北京师范大学监测点进行PM2.5样品的采集.本研究分析PM2.5及其OC和EC的质量浓度变化特征,并采用ρ(OC)/ρ(EC)最小比值法估算二次有机碳(secondary organic carbon,SOC)的质量浓度.除此之外,从定性和定量两方面研究OC和EC的来源及其来源贡献量.结果表明:北京市采暖期PM2.5平均质量浓度为(90.69±61.86)μg/m3,其中OC和EC的平均质量浓度分别为(21.91±12.02)、(5.03±2.58)μg/m3,分别占PM2.5的24.16%和5.55%;SOC的平均质量浓度为(8.37±6.05)μg/m3,占总有机碳(total organic carbon,TOC)质量浓度的37.27%.PM2.5中OC和EC的相关系数较高,表明它们来源相同,且主要来源于机动车尾气、燃煤排放.机动车尾气排放的贡献量达44.70%,成为OC、EC的重要来源.因此,严格控制机动车保有量的快速增长,减少机动车尾气排放,将成为改善城市大气环境质量的重要手段之一.  相似文献   

10.
厨房烹饪是民居室内PM2.5污染物的重要来源,为对其进行有效控制,提出了空气幕送风方式。建立厨房物理模型,使用Fluent软件对厨房内的气流组织、温度分布和PM2.5浓度分布进行了数值模拟。研究了空气幕对厨房内PM2.5和热流的控制效果,并对3种射流速度进行对比分析。研究结果表明:空气幕射流气流对烹饪区域产生了很好的包裹效应,可以阻隔PM2.5的扩散和热流的蔓延;可使厨房内PM2.5排除率提高到44%~75%,平均降温1~2℃。当空气幕射流速度为0.6 m/s时,控制效果最佳。研究结论可对厨房PM2.5污染的防治提供参考,为空气幕送风系统的研究提供模拟数据和理论依据。  相似文献   

11.
针对PM2.5浓度的非线性和不确定性,提出了一种基于集成树-梯度提升决策树(EnsembleTrees-GBDT)的PM2.5预测模型.该模型首先在集成树框架下进行特征选择,即选取PM2.5浓度主要影响因素,使用算术均值聚合法计算出各项特征对PM2.5浓度增加的影响程度,并以影响程度由强到弱的次序排序;其次使用网格搜索对GBDT算法进行参数优化,选取树的深度等参数的最优值;最后构建完整的PM2.5浓度集成预测模型.使用北京市2015-2016年的污染物浓度和气象条件观测值2个数据集,对模型进行了预测仿真实验.对比实验结果表明,所提出的EnsembleTrees-GBDT预测模型相比于决策树、随机森林、支持向量机等模型,具有更低的平均绝对误差和均方根误差,同时具有更好的泛化能力,能够更准确地预测PM2.5浓度,并实现对PM2.5浓度影响因素的有效分析.  相似文献   

12.
基于气象因素的PM2.5质量浓度预测模型   总被引:1,自引:0,他引:1  
为得出拟合效果最佳的预测模型,建立了多元回归和机器学习预测模型对PM2.5质量浓度进行预测。在输入气象因素的基础上,引入污染物质量浓度基础值和周期因素两类变量作为预测输入,并对4种预测模型进行对比研究。研究结果表明:对预测输入进行改进后,多元线性回归预测模型拟合优度由0.52提高至0.64,所选取的气象参数、污染物质量浓度基础值和周期因素能较好地描述PM2.5质量浓度的日变化情况;与多元线性回归预测模型相比,BP神经网络和支持向量机两种预测模型能较好地捕捉PM2.5质量浓度与预测输入之间的非线性影响规律,整体拟合优度分别达0.69和0.74,预测准确度较高;支持向量机预测模型可作为PM2.5质量浓度预测的首选方法。  相似文献   

13.
通过对箱体实验仓内PM2.5的采集、称重与PM2.5中碳组分的分析,研究香烟自由燃烧过程PM2.5的一次排放和燃烧结束后仓内PM2.5的二次生成。结果表明:单支某品牌香烟自由燃烧时PM2.5一次排放量为1 200μg,排放速率为3μg·s-1,1 h内30 m3空间室内连续9支香烟自由燃烧,PM2.5质量浓度最大可增加360μg·m-3。香烟自由燃烧直接排放的PM2.5中碳组分的分布特征:碳组分占PM2.5的比重为57.7%,高于环境空气PM2.5中碳组分比重;OC1、OC2、OC3是香烟自由燃烧过程一次排放PM2.5中碳组分的优势组分,ρ(OC1)/ρ(TC)为34.6%,ρ(OC2)/ρ(TC)为23.9%,ρ(OC3)/ρ(TC)为17.8%;香烟自由燃烧排放PM2.5中ρ(OC)/ρ(EC)的特征值为14.8,ρ(Char)/ρ(Soot)的特征值为1.2。香烟自由燃烧结束后仓内PM2.5及碳组分的分布反映香烟自由燃烧烟气对于PM2.5的二次生成有一定的贡献。  相似文献   

14.
2014年3月13日至4月20日在福建三明市利用PM_(2.5)中流量采样器采集大气中PM_(2.5)膜样品,测定了PM_(2.5)的质量浓度,并用热/光碳分析仪和离子色谱分析了其组分变化特征.结果表明,三明市观测期间PM_(2.5)的平均质量浓度为73.61±0.73μg/m~3,有机碳(OC)和元素碳(EC)的平均质量浓度分别为7.26±1.00和5.63±0.27μg/m~3,水溶性离子中SO_4~(2-)、NH_4~+、NO_3~-和Na~+的质量浓度分别为18.08±12.19、4.18±3.56、2.77±1.16和2.73±0.23μg/m~3,总和占总水溶性离子的87.76%.结合后向轨迹分析了福建三明市的污染物来源特征.该地区OC/EC的平均比值小于2,SOC(二次有机碳)生成量很少,主要以一次有机污染物为主,OC、EC与K~+的相关性分析表明OC、EC与K~+的来源相近,可以判断OC、EC绝大部分来源是生物质燃烧产生的污染物.在水溶性离子分析中,观测期间NO_3~-/SO_4~(2-)为0.159±0.02,表明三明市主要以固定源为主,机动车辆等移动源贡献较少.  相似文献   

15.
随着我国的经济和城市化迅速发展,PM2.5主导的区域空气污染已成为紧迫、突出的环境问题。据相关研究表明,PM2.5在不同季节质量浓度差异较大。根据广州市2015~2019年的PM2.5月均质量浓度数据,结合大气污染物及气象因素,引入季节指数,建立预测PM2.5质量浓度的改进多元线性回归和多层感知器组合预测模型,探析广州市大气污染物中PM2.5质量浓度的变化规律。结果表明,用季节指数改进的组合预测模型对PM2.5质量浓度进行预测分析,拟合结果良好。使用不同评价指标将组合模型与传统的多层感知器预测模型和多元线性回归模型进行对比,该组合模型的均方根误差(Root Mean Square Error,RMSE)、平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)、平均绝对误差(Mean Absolute Error,MAE)分别比多层感知器模型减少了23.1%、31%、24.2%;比多元线性回归模型减少了35.3%、41.3%、41%。该模型精度均优于传统的多元线性回归模型和多层感知器模型,能更好地预测环境PM2.5质量浓度,为优化环境提供参考。  相似文献   

16.

为研究唐山PM2.5污染特征及区域传输贡献,对唐山冬夏2季PM2.5环境样品进行测试分析,并采用WRF-CAMx对京津冀地区PM2.5及二次离子进行定量模拟,获取了PM2.5成分谱数据,估算了PM2.5和二次离子的区域传输贡献.唐山冬夏2季PM2.5平均质量浓度分别为(117.9±56.6)、(77.3±29.8)μg/m3,超标率分别为65.0%和41.7%;水溶性离子的平均质量浓度分别为(58.4±17.9)和(42.6±23.6)μg/m3,分别占PM2.5的49.4%和55.0%,是PM2.5的主要成分.Cu、Zn、As、Sr、Cd、Sb、Pb主要来自人为源,Na、Mg等其余元素主要来自地壳源.冬夏2季PM2.5受外来源贡献分别为26.9%和31.1%,二次无机气溶胶(secondary inorganic aerosol,SIA)传输作用较PM2.5更为显著,夏季PM2.5和SIA外来源贡献高于冬季,高质量浓度时段外来源贡献会有一定幅度的上升.稳定的大气环流背景场、低风速等气象条件和燃煤排放源的增加是造成冬季重污染发生的重要原因.

  相似文献   

17.
提出一种基于深度信念网络(deep belief networks, DBNs)的区域PM2.5日均值预测方法,讨论了训练数据选择方式,并优化了DBNs参数设置。通过相关实验并与基于径向基神经网络(radial basis function, RBF)和反向传播神经网络(back propagation, BP)方法比较,验证了基于DBNs方法的可行性和预测精度。实验结果表明:基于DBNs的方法,区域(西安市)预测PM2.5日均值与观测日均值之间均方差(mean square error, MSE)为8.47×10-4mg2/m6;而采用相同数据集,基于RBF和BP的方法均方差为1.30×10-3mg2/m6和1.96×10-3mg2/m6。比较分析表明:基于DBNs的方法能较好预测区域整体PM2.5的日均值变化趋势,显著优于基于神经网络和径向基网络方法的预测结果。  相似文献   

18.
水化学特征是流域气候特征与环境的重要指示器,可用于揭示流域内河流、湖泊的补给方式及物质来源。以青藏高原柴达木盆地东北部巴音河小流域为研究对象,分析了巴音河—可鲁克湖—托素湖小流域生态系统的水化学组成,探讨了其主要的离子来源及控制因素。结果表明:水体pH、电导率(EC)及溶解性总固体(TDS)沿流向均呈升高的趋势,巴音河、可鲁克湖及托素湖水化学类型分别为HCO3-Cl-Na-Ca-Mg型/HCO3-Cl-Na-Mg型、HCO3-Cl-Na-Mg型及SO4-Cl-Na-Mg型; 托素湖作为封闭的咸水湖,主要受到蒸发浓缩作用的控制,而巴音河、可鲁克湖则受到岩石风化作用、蒸发浓缩作用以及钠盐淋溶作用等的共同控制; 受蒸发作用的影响,水体碳酸盐矿物达到饱和状态并发生沉淀,从而导致Ca2+质量浓度沿流向下降; 巴音河、可鲁克湖Mg2+/Ca2+摩尔浓度比值较低,推测形成文石、方解石等碳酸盐沉淀,而托素湖Mg2+/Ca2+摩尔浓度比值较高,则可能形成高镁方解石、原白云石等碳酸盐沉淀; 研究区水体中Na+、K+、Cl-主要来源于石盐(NaCl)和钾盐(KCl)等蒸发岩的溶解; 而Mg2+、SO2-4主要来源于蒸发岩(MgSO4)风化; Ca2+及高质量浓度的HCO-3可能来源于碳酸盐矿物的快速溶解,此过程也是水体Mg2+来源之一。  相似文献   

19.

农业和机动车NH3排放分别是农村和城市地区的重要NH3排放源, 开展两者环境影响的对比研究, 对于减排策略的科学制定具有重要意义。而目前缺少农业和机动车NH3排放差异化影响的研究。为此, 基于排放因子法建立了1 km分辨率的农田施肥、畜禽养殖和机动车NH3排放清单, 分析了其时空分布特征; 进一步利用WRF-CAMx-PSAT模型, 结合Brute-Force法对2017年1月和6月的农业源、机动车源减排情景进行模拟, 探究不同NH3排放源对大气PM2.5的差异化影响。研究结果显示, 2017年京津冀农田施肥、畜禽养殖、机动车NH3排放分别为31.0万、44.7万和0.8万t。从减排效果看, 当对农业NH3和机动车NH3分别进行梯度减排(10%、30%、50%、70%、100%)时, NH4+呈现出近线性变化, SO42-、NO3-呈现出非线性下降趋势。受排放量影响, 农业NH3减排情景下NH4+、SO42-、NO3-的平均浓度变化率(-16.3%、-4.3%和-37.3%)显著高于机动车NH3减排情景(-1.7%、-0.2%和-4.3%)。但从减排效率看, 则呈现相反现象。为分析减排效率, 提出并定义了NH3减排空气质量改善效率指数, 即单位(104 t)NH3减排下PM2.5浓度变化值。对比发现, 机动车NH3减排的空气质量改善效率明显高于农业NH3减排, 1月和6月分别相差1.0~3.2倍和1.2~2.3倍。研究结果可为大气污染的优化防控提供科学依据。

  相似文献   

20.
为探究高密度城区绿地景观格局对于PM2.5浓度与O3浓度的尺度效应,分析西安市高密度城区范围,选取边界密度(ED)、景观形状指数(LSI)、面积加权形状指数(SHAPE_AM)和平均形状指数(SHAPE_MN)共4个景观格局指数衡量绿地景观格局,爬取2020—2021年国家空气质量监测站点的大气监测数据,运用皮尔逊相关性分析和线性回归分析方法,探究多尺度下高密度城区绿地景观格局对PM2.5和O3的时空分布特征、绿地景观格局特征和PM2.5浓度、O3浓度与景观格局指数的多尺度影响关系.结果表明,景观格局在夏季对于PM2.5浓度、在春季对于O3浓度的影响更为显著;在高密度城区内较小尺度的绿地上优化景观格局对PM2.5与O3浓度影响更有效.由此提出的绿地优化策略可为城市高密度城区多尺度绿地规划设计提供参考依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号