首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
研究了掺纳米SiO2的钢纤维混凝土(NSFC)、 钢纤维混凝土(SFRC)和普通混凝土(NC)三种材料在不同加热温度后的抗压、 劈裂和抗折强度等力学性能, 对不同温度热处理后的微观结构进行了SEM分析, 对钢纤维与过渡区界面的相结构进行了XRD分析。结果表明: 在测试温度范围内, NSFC的抗压、 劈裂和抗折强度均高于SFRC和NC的强度, 且在400 ℃时达到最大值。在常温下, NSFC的抗压、 劈裂和抗折强度较NC分别提高27.01%、 63.28%和54.12%, 400 ℃高温热处理后比NC分别高35.09%、 84.62%和87.23%; SEM分析表明, 在钢纤维与过渡区的界面处, 致密度提高, 显微硬度提高。由于固相反应, 使界面区结构发生变化, 在钢纤维表层形成扩散渗透层(白亮层), 即化合物层, 呈锯齿状, XRD分析证明, 白亮层主要由FeSi2和复杂的水化硅酸钙组成, 从而增强了钢纤维与基体的粘结力, 提高了混凝土的高温力学性能。  相似文献   

2.
用粉煤灰和铁尾矿制备高强混凝土   总被引:2,自引:0,他引:2  
以粉煤灰和铁尾矿为主要原料制备高强混凝土,用X射线衍射(XRD)和扫描电镜(SEM)分析材料的水化产物和微观形貌,研究了铁尾矿掺量、水胶比、高效减水剂用量对高强混凝土力学性能的影响。结果表明,混凝土的抗压强度为100.1 MPa,抗折强度为20.6 MPa,固体废弃物掺量达86.4%;在水化过程中大量C-S-H凝胶和钙矾石的生成为细骨料混凝土提供了早期强度,火山灰活性反应对Ca(OH)2的消耗是混凝土后期强度持续提高的主要原因。  相似文献   

3.
利用纳米SiO2(nano SiO2)早期可促进聚合物水泥基复合材料水化速率、提升其力学性能、改善其界面过渡区(ITZ)性能及优化其孔隙结构等特点,借助XRD、SEM、EDS、显微硬度(MH)及压汞(MIP)等试验,揭示了nano SiO2对聚合物水泥基复合材料早期性能影响的微观机制。结果表明:当nano SiO2掺量为2wt%时,聚合物水泥基复合材料的力学性能最优,3 d和7 d龄期抗压强度分别为57.5 MPa和67.3 MPa,较仅仅掺加聚合物的水泥基复合材料分别提高了12.7%和13.9%;nano SiO2的掺入改变了聚合物水泥基复合材料水化产物数量及微观形貌。对于ITZ性能,nano SiO2掺入后,聚合物水泥硬化浆体-骨料的ITZ厚度减小,形貌变得更加致密;ITZ的钙硅比因nano SiO2的加入变小而其显微硬度变大;此外,nano SiO2加入后可以进一步填充聚合物水泥基复合材料更加细小的孔隙,使其凝胶孔比例变高,最可几孔径变小,大大优化了聚合物水泥基复合材料的孔隙结构。   相似文献   

4.
为改善再生混凝土的力学和耐久性能,以硅灰为增强材料对再生混凝土进行改良。研究了硅灰对再生混凝土3 d、28 d、90 d抗压强度和28 d、90 d抗氯离子渗透性能的影响。结合扫描电镜、显微硬度等微观观测手段,分析了28 d再生混凝土试样微观结构和性能变化。采用压汞法测试了再生混凝土的孔结构参数,探究硅灰对再生混凝土孔隙性能的影响。结果表明:硅灰可以提升再生混凝土的抗氯离子渗透性能,随掺量的增加提升效果先增后减;掺入硅灰可以改善再生混凝土多重界面过渡区结构,增加界面过渡区(ITZ)显微硬度,降低孔隙率。再生混凝土内部存在较多有害孔隙,硅灰可以细化孔隙结构,降低孔隙率,掺量为6%时效果最佳。  相似文献   

5.
为研究不同因素、不同水平对再生混凝土力学性能的作用。该文通过正交试验研究钢纤维掺量、再生粗骨料掺量和粉煤灰掺量对再生混凝土力学性能(抗压强度、劈裂抗拉强度和抗折强度)的影响,确定各因素对再生混凝土力学性能的影响程度,并加以量化表征,并提出多因素共同作用下再生混凝土力学性能的多元非线性回归模型且进行验证。在此基础上,该文进一步研究再生混凝土的抗冻性。结果表明:再生混凝土的力学性能随钢纤维掺量的增加而提高;随粉煤灰掺量增加而降低;再生粗骨料掺量对再生混凝土的力学性能影响较小。钢纤维的掺入可提高再生粗骨料的掺量。再生混凝土力学性能的实测值与通过建立的回归模型得到的计算值的最大误差在6.5%以内。此外,钢纤维的掺入和减少再生粗骨料的掺量均可以提高再生混凝土的抗冻性。  相似文献   

6.
梁学杰 《功能材料》2023,(3):3217-3223
针对水泥混凝土存在的抗折强度不足、耐久性能偏低等问题,以环氧树脂为掺杂相,制备了不同环氧树脂掺量(0%,3%,6%,9%(质量分数))的改性水泥混凝土,分析了环氧树脂对水泥混凝土力学性能、微观形貌、耐久性能的影响。结果表明,环氧树脂的掺杂加速了水化反应的进行,混凝土的裂纹和孔隙数量减少,致密度提高。混凝土的抗压强度和抗折强度均随环氧树脂掺杂量的增大而先增大后减小,6%(质量分数)环氧树脂掺杂量的混凝土在养护28 d时抗压强度和抗折强度分别达到最大值43.8和7.9 MPa,相比未掺杂环氧树脂的混凝土分别提高了18.70%和29.51%。随着环氧树脂掺杂量的增大,混凝土的氯离子扩散系数先降低后增高,6%(质量分数)环氧树脂掺杂量的混凝土养护28 d的氯离子扩散系数最低为7.7×10-8 cm/s,抗氯离子腐蚀性能最佳。在冻融循环次数达到80次时,6%(质量分数)环氧树脂掺杂量的混凝土的质量损失率最低为-0.13%,相对动弹性模量最大为94.86%,磨损量最低为0.66 kg/m2,磨损量降低率达到46.77%,具有优异的耐久性能。  相似文献   

7.
目前聚合物水泥混凝土已成为高性能混凝土研究的一个重要组成部分。中实验采用了一种聚合物乳液(丁苯胶乳)对高性能混凝土进行改性处理,研究不同丁苯胶乳掺加量对水泥混凝土基本力学性能、韧性、自收缩性能及抗氯离子渗透性能的影响。实验结果表明,丁苯胶乳改性水泥混凝土的抗压强度随着丁苯胶乳掺加量的增加有所降低;而丁苯胶乳的加入,对混凝土的劈裂抗拉强度、抗折强度及韧性有较大提高,且掺量为15%的增强效果最明显,劈裂抗拉强度和抗折强度的提升幅度分别达到17.4%和23.8%,;掺量为10%的情况下韧度指数最高,增加幅度达到71.1%;丁苯胶乳改性混凝土浇注24 h后的总收缩值,随着丁苯胶乳掺量的增加而逐渐减少,掺量为15%情况下的总收缩值降幅高达35%;同时,改性后水泥混凝土的抗氯离子扩散能力有所提高,抗渗性能也得到改善。  相似文献   

8.
研究了掺纳米SiO2的钢纤维混凝土(NSFC)、钢纤维混凝土(SFRC)和普通混凝土(NC)三种材料在不同加热温度后的抗压、劈裂和抗折强度等力学性能,对不同温度热处理后的微观结构进行了SEM分析,对钢纤维与过渡区界面的相结构进行了XRD分析.结果表明:在测试温度范围内,NSFC的抗压、劈裂和抗折强度均高于SFRC和NC的强度,且在400℃时达到最大值.在常温下,NSFC的抗压、劈裂和抗折强度较NC分别提高27.01%、63.28%和54.12%,400℃高温热处理后比NC分别高35.09%、84.62%和87.23%; SEM分析表明,在钢纤维与过渡区的界面处,致密度提高,显微硬度提高.由于固相反应,使界面区结构发生变化,在钢纤维表层形成扩散渗透层(白亮层),即化合物层,呈锯齿状,XRD分析证明,白亮层主要由FeSi2和复杂的水化硅酸钙组成,从而增强了钢纤维与基体的粘结力,提高了混凝土的高温力学性能.  相似文献   

9.
为研究橡胶再生粗骨料混凝土的力学性能和疲劳性能,该文采用不同配合比橡胶再生粗骨料混凝土,进行了力学性能和疲劳性能试验。结果表明:1)再生粗骨料混凝土的抗压强度比普通混凝土提高了9.8%,但抗折强度比普通混凝土低,其弹性模量略有下降。2)再生粗骨料混凝土的基本力学性能随废弃橡胶颗粒的掺入有较显著的下降,折压比随之增加,峰值挠度、峰值应变和极限应变在一定范围内随橡胶颗粒含量的增加而增加。3)当橡胶颗粒掺量为20%时,橡胶再生粗骨料混凝土的极限应变是无橡胶再生粗骨料混凝土的3.46倍,同时显著增强了混凝土的疲劳寿命。  相似文献   

10.
陈旭勇  程子扬  詹旭  吴巧云 《材料导报》2021,35(23):23235-23240,23245
以质量取代法研究纳米SiO2(取代水泥)和橡胶粉(取代河砂)对再生混凝土28 d抗压强度、抗折强度和劈裂抗拉强度的影响,并通过MAT-LAB软件建立了二维随机骨料投放程序,采用ABAQUS软件对再生混凝土单轴受压力学性能进行了数值模拟分析.结果表明:单掺橡胶粉时,随着橡胶粉掺量增加,再生混凝土的抗压强度、劈裂抗拉强度和抗折强度呈先增大后减小的趋势;当橡胶粉掺量恒定时,再生混凝土抗压、劈裂抗拉和抗折强度随着纳米SiO2掺量增加而增大.与未掺SiO2组相比,纳米SiO2掺量为1.5%(质量分数,下同)的再生混凝土28 d抗压强度、劈裂抗拉强度和抗折强度分别提高了13.3%、22.8%、21%.基准组(纳米SiO2和橡胶掺量为0)和试验组(1.5%纳米SiO2和5%橡胶)单轴受压试验模拟结果与真实试验结果的误差较小,表明数值模拟分析所得的计算值与试验值吻合良好.  相似文献   

11.
为研究硅酸盐渗透剂、纳米二氧化硅和硅酸乙酯三种表面处理物对混凝土性能的改善,对经处理后混凝土表面的摩擦性能、吸水率、耐磨性、抗氯离子渗透性和抗冻性进行测试分析。结果表明,硅酸乙酯是一种理想的表面处理材料,相对于未经处理的混凝土而言,处理后混凝土的7 d吸水量降低75%,耐磨度增大31.8%,且不会影响混凝土的表面摩擦性能;经硅酸乙酯处理后的混凝土在经历28次单面冻融循环后剥落物总量只有251 g/m2。硅酸盐渗透剂也能降低混凝土的渗透性,但需注意用量,避免在混凝土表面形成薄膜。纳米二氧化硅的增强作用相对有限,不适用于机场道面混凝土。  相似文献   

12.
混凝土单轴抗压强度三维细观数值仿真   总被引:1,自引:0,他引:1  
该文在细观层面上将混凝土看作粗骨料、砂浆、界面、初始缺陷组成的四相复合材料, 给出了三维随机缺陷界面弹簧元模型模拟混凝土单轴抗压强度的数值方法。讨论了初始缺陷含量及其分布的确定方法以及界面细观计算参数的取值范围。数值模拟结果表明:混凝土的抗压强度随着初始缺陷含量的增加有大幅度降低;当界面初始缺陷含量为30%时, 混凝土抗压强度的计算值与试验值吻合较好。  相似文献   

13.
In order to investigate the effect of coarse aggregate content on the chloride ion migration coefficient of concrete, specimens with different coarse aggregate volume fractions and two water/cement (w/c) ratios of mortar matrix were used. The chloride ion migration coefficient of concrete is obtained using the electrochemical technique to accelerate chloride ion migration in cement-based material and the experimental results were plotted as a function of the fine aggregate volume fraction. The results are analyzed comparing experimental results and theoretical models that represent the concretes as three-phase composite materials. The three phases are the mortar matrix, the coarse aggregate, and the interfacial transition zone between the two. The chloride ion migration coefficient is used to assess the dilution, tortuosity, interfacial transition zone (ITZ) and, percolation effects of coarse aggregate in concrete. It appears that the dilution and tortuosity effects are a dominant factor affecting the chloride ion migration coefficient of concrete in the low volume fraction of coarse aggregate. As the volume fraction of coarse aggregate increases to 40 and 20% in concrete of w/c ratio 0.35 and 0.45, respectively, the ITZ with percolation effects are significantly.  相似文献   

14.
再生混凝土纳米复合强化试验   总被引:1,自引:0,他引:1  
本文对再生混凝土进行纳米复合强化试验研究,通过引入高活性纳米SiO2和纳米改性矿物掺合料,得到了纳米改性再生混凝土,研究了高活性纳米SiO2和纳米改性矿物掺合料对再生混凝土力学性能的影响,还研究了高活性纳米SiO2对再生混凝土抗氯离子渗透性能与抗渗性能的影响,为实际工程应用提供理论依据。研究结果表明:纳米SiO2与纳米改性矿物掺合料双掺,不仅能在一定程度上改善再生混凝土的力学性能,还能显著改善再生混凝土的抗氯离子渗透性能与抗渗性能,显示出良好的复合效果。  相似文献   

15.
The strength and durability of high strength blended cement concretes incorporating up to 20% of volcanic ash (VA) subjected to high temperatures up to 800 °C are described. The strength was assessed by unstressed residual compressive strength, while durability was investigated by rapid chloride permeability (RCP), mercury intrusion porosimetry (MIP), differential scanning calorimetry (DSC), crack pattern observations and microhardness testing. High strength volcanic ash concrete (HSVAC) exhibited better performance showing higher residual strength, chloride resistance and resistance against deterioration at high temperatures compared to the control high strength OPC concrete. However, deterioration of both strength and durability of HSVACs increased with the increase of temperature up to 800 °C due to weakened interfacial transition zone (ITZ) between hardened cement paste (hcp) and aggregate and concurrent coarsening of the hcp pore structure. The serviceability assessment of HSVACs after a fire should therefore, be based on both strength and durability considerations.  相似文献   

16.
Prediction of the chloride diffusion coefficient of concrete   总被引:2,自引:0,他引:2  
It has been experimentally verified that the structure of the interfacial transition zone (ITZ) in concrete differs from that of bulk cement paste. As such, concrete should be modeled as a three-phase material at a mesoscopic level. This paper presents a three-phase composite model for predicting the chloride diffusion coefficient of concrete. Taking the inclusion as aggregate and the matrix as cement paste, the composite circle model is established by adding an ITZ layer in between the inclusion and the matrix. Solving the asymmetrical problem analytically, a closed-form solution for the chloride diffusion coefficient of concrete is derived. After verifying this model with experimental results, the effects of the aggregate area fraction, the chloride diffusion coefficient of ITZ, the ITZ thickness, the maximum aggregate diameter and the aggregate gradation on the chloride diffusion coefficient of concrete are evaluated in a quantitative manner. It is found that the chloride diffusion coefficient of concrete decreases with the increase of the aggregate area fraction and the maximum aggregate diameter, but increases with the increase of the chloride diffusion coefficient and thickness of ITZ. It is also found that the aggregate gradation has a significant influence on the chloride diffusion coefficient of concrete.  相似文献   

17.
该文采用Ф80 mm的分离式霍普金森压杆装置,研究了纳米改性后的UHTCC(ultra high toughness cementitious composites)在高速冲击压缩应力状态下的力学响应,并与常规UHTCC材料、钢纤维混凝土进行了对比。试验得到了各组材料在准静态和动态共计4组应变率(2.36×10-5 s-1、120 s-1、160 s-1、200 s-1)下的准静态压缩强度及冲击压缩应力-应变曲线,并计算了各组试件的耗能能力。为了进一步优化材料的抗冲击性能,该文还研究了纳米改性后的UHTCC基体中钢纤维和PVA纤维的混杂效果。试验结果表明:5组材料均具有应变率敏感性,峰值应力和耗能能力随着应变率的增大而上升;经过纳米改性后的UHTCC材料冲击压缩力学强度及耗能能力明显提高;在冲击荷载下,钢纤维和PVA纤维产生正混杂效应,提高钢纤维掺量可以强化UHTCC的抗冲击能力;应变率的大小和钢纤维的掺量之间的关系影响了动态峰值应力的提升。  相似文献   

18.
制备了掺量为0.2%(以水泥质量为基准)的纳米Fe2O3(NF)、复掺纳米Fe2O3和纳米CaCO3 2种纳米材料(NFC)以及复掺纳米Fe2O3、纳米CaCO3和纳米SiO2 3种纳米材料(NFCS)的混凝土,之后采用直径100 mm分离式霍普金森压杆(SHPB)试验装置测试了养护龄期为28 d的3种混凝土在不同平均应变率等级下的动力特性并与普通混凝土(PC)进行对比研究。结果表明:准静态载荷下,复合纳米材料的掺入可有效调高混凝土的抗压强度;冲击载荷作用下,中低水平平均应变率时, NFC动态抗压强度最高, 80 s-1时NFC比PC高31.6%,高水平平均应变率下NF动态抗压强度具有优势,在125 s-1时, NF比PC高16%;NF在冲击载荷作用下峰值应变具有显著优势,具有良好的变形性能;以比能量吸收作为韧性评价指标,在平均应变率为75 s-1和125 s-1时, NF比PC增幅达到66.6%和75.7%。通过SEM照片分析,纳米Fe2O3颗粒增大了水泥石密实度,进而改善了NF的强度和韧性;由压汞试验分析,纳米CaCO3颗粒在混凝土中,改善了水泥石孔隙结构。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号