共查询到18条相似文献,搜索用时 82 毫秒
1.
针对评分数据的稀疏性制约协同过滤推荐性能的情况,提出一种新的相似性度量方法。首先,定义了用户的模糊信息熵以反映用户评分偏好的不确定程度;其次,利用两两用户的模糊互信息衡量用户之间的相似程度;最后,同时考虑用户之间的模糊互信息和用户的模糊信息熵,并设计一种基于模糊信息熵的相似性度量方法以计算用户之间的相似性。在两个公开数据集上的试验结果表明:基于模糊信息熵的相似性度量方法能够降低数据稀疏性的影响,并能显著提高推荐系统的推荐性能。 相似文献
2.
协同过滤技术是目前电子商务推荐系统中主要的技术之一,随着系统规模的日益扩大,其面临数据稀疏性和冷开始等问题。针对上述问题,提出了一种改进的协同过滤推荐算法。新算法是在传统协同过滤推荐算法的基础上增添辅助项目评分支持环节,加入辅助项目的评分信息对产品项目评分数据库进行补充。实验结果表明,改进的算法有效地解决了由于产品评分数据的稀疏而造成的推荐质量下降的问题,提高了推荐系统的推荐质量。对经济实力较弱的企业通过推荐系统推动电子商务的发展具有一定的参考价值。 相似文献
3.
基于加权信息熵相似性的协同过滤算法 总被引:1,自引:0,他引:1
协同过滤算法是推荐系统中最为成功的技术之一,相似性计算是协同过滤算法的核心.针对传统的相似度计算方法在数据稀疏的情况下推荐不准确问题,提出了基于项目间差异信息熵的相似度计算方法,先通过差异值和共同评价数目对信息熵进行加权,再归一化处理来计算项目间的相似度.用基于项目(Item-based)相似性的协同过滤算法进行了实验验证,实验结果表明,该算法提高了个性化推荐精度. 相似文献
4.
大多数用户相似性算法在计算用户相似性时只考虑了用户间的共同评分项,而忽略了用户其他评分中可能隐藏的有价值信息.为了准确评估用户间的相似性,提出了一种基于KL散度的用户相似性协同过滤算法.该算法不仅利用了共同评分项,还考虑了其他非共同评分信息的影响.该算法充分利用了用户的所有评分信息,提高了用户相似性度量的可靠性和准确性.实验结果表明,该算法优于当前主流的用户相似性算法,且在没有共同评分信息的条件下,仍能有效地完成用户相似性度量,解决了对共同评分项的完全依赖问题,具有更好的适应性. 相似文献
5.
数据稀疏性制约着协同过滤的推荐性能,为此,首先根据用户评分数量定义了用户的影响因子,在计算用户之间的相似性时,增加了影响因子衡量用户关系;其次,根据用户评分质量定义了有影响力用户群体.在此基础上,结合用户的评分数量和评分质量,使选择的有影响力近邻最大程度上作用于推荐过程.实验结果表明,所提方法能显著提高推荐性能. 相似文献
6.
为解决协同过滤推荐方法中矩阵的稀疏性导致推荐精度下降的问题,文中提出一种结合用户属性及项目特征的矩阵填充协同过滤推荐方法.通过用户属性特征计算用户间语义相似性,构建项目领域本体以计算项目间语义相似性,加权用户语义相似性和项目语义相似性预测出的评分值填充评分矩阵,并获取近邻用户进行推荐.在MovieLens数据集上利用平... 相似文献
7.
为了提高协同过滤算法的推荐精度,从协同过滤算法中近邻用户/项目组的选择人手,提出基于双重阈值近邻查找的协同过滤算法。该算法能充分利用现有的稀疏用户项目评分矩阵,找出与目标用户相关性较强,且能参与到评分预测过程中的候选用户。实验结果表明,该算法相比传统的协同过滤算法及部分改进算法,其推荐精度有一定提高,对实际应用具有一定的参考价值。 相似文献
8.
徐兵兵 《浙江纺织服装职业技术学院学报》2010,9(2):56-60
提出了一种基于粗集和模糊聚类相结合的协同过滤推荐算法,通过粗集理论自动填补空缺评分降低数据稀疏性;然后根据用户对项目评分的相似性对用户进行模糊聚类,并在此基础上搜索目标用户的最近邻居,从而缩小最近邻居的查找范围并产生推荐结果.实验结果表明,该方法能有效的解决数据稀疏性问题,提高了推荐系统的精确性和实时响应速度. 相似文献
9.
在推荐系统中数据稀疏性和推荐时效性是经常面对的问题,为了更好地反映不同用户在不同阶段的邻域相关性,从而能够挖掘出评分项目中所隐含的个性化信息,在基于用户的协同过滤算法预测评分过程中将联合相似度与用户兴趣的时序信息相结合,首先融合覆盖评分信息的用户间的协同相似度、偏好相似度和轨迹相似度等3种相似度,通过参数调节不同度量的权重及相似度阈值形成联合相似度以获取用户有效的邻居数目;其次在联合相似度计算过程中引入反映时间权重的Logistic函数以提高推荐的时效性;最后进行实验,结果表明,所提出的方法与经典算法相比,不仅提高了精度,而且可以更有效地预测用户的真实评分。 相似文献
10.
基于项目语义相似度的协同过滤推荐算法 总被引:2,自引:1,他引:2
协同过滤是个性化推荐系统中最广泛使用的推荐技术.在用户评分矩阵极度稀疏情况下,传统的协同过滤推荐算法中用户相似度的计算建立在用户评分项目交集之上,并且没有考虑不同项目之间存在的语义关系,从而导致推荐准确率低.针对上述问题,文章提出一种新的基于项目语义相似度的协同过滤算法(CFSSI,collaborative filtering basedon semantic similarity between Items):首先利用领域本体计算项目之间的相似性,填充评分矩阵缺失值,而后根据修正的余弦相似度计算用户相似性.实验结果表明:算法可以在用户评分数据极端稀疏的情况下,仍能取得较高的推荐质量. 相似文献
11.
一种基于三部图网络的协同过滤算法 总被引:1,自引:0,他引:1
推荐系统是电子商务领域最重要的技术之一,而协同过滤算法又是推荐系统用得最广泛的.提出了一种基于加权三部图网络的协同过滤算法,用户、产品及标签都被考虑到算法中,并且研究了标签结点的度对用户相似性计算的影响.实验结果表明,此算法在解决用户冷启动问题的同时,还具有较高的推荐准确性. 相似文献
12.
针对传统协同过滤推荐算法存在无法反映用户短时兴趣的问题,提出一种基于门控循环单元(gated recurrent unit, GRU)神经网络与主动学习的协同过滤推荐算法。在采用GRU神经网络的基础上,将数据进行时序化处理,反映用户兴趣变化,并利用主动学习动态采样数据中的高质量的数据进行GRU神经网络的训练,使模型快速建立。在MovieLens1M数据集上的试验结果表明:加入主动学习的GRU模型的推荐算法比基于用户的协同过滤推荐算法(user-based collaborative filtering, UCF)、基于马尔科夫模型的协同过滤推荐算法(markov chain, MC)、基于隐语义模型的协同过滤推荐算法(latent factor model, LFM)算法有更高的短时预测率、召回率、项目覆盖率以及用户覆盖数,能够有效预测用户短时兴趣,提升精度,发掘长尾物品,且与原始GRU模型相比能够以更少的迭代次数达到相同效果。 相似文献
13.
提出了基于联合聚类和带正则化的迭代最小二乘法的协同过滤算法。该算法对原始矩阵进行用户-项目两个维度的联合聚类生成若干子矩阵,子矩阵的规模远小于原始评分矩阵,可有效降低预测阶段计算量,而且也缓解了数据稀疏性问题。在子矩阵中通过对传统的矩阵分解进行正则化约束来防止模型过拟合现象,并采用迭代最小二乘法进行训练分解模型,可有效缓解可扩展性。实验表明,该方法具有高效性。 相似文献
14.
一种解决协同过滤系统冷启动问题的新算法 总被引:1,自引:1,他引:1
在基于矩阵分解的协同过滤算法中,新用户和新项目的冷启动问题是所面临的难点问题之一。通过运用基于K近邻的属性--特征映射的算法得到新用户和新项目的特征向量,解决了该类协同过滤算法所面临的冷启动问题。在真实的实验数据集上验证了该算法的有效性。 相似文献
15.
基于矩阵分解模型、时间因素和排名模式,提出一种局部协同过滤的排名推荐算法,并放松用户对项目的评分矩阵是低秩的这一假设,假设用户对项目的评分矩阵是局部低秩的,即评分矩阵在某个用户项目序偶的近邻空间内是低秩的。修改信息检索中常用的评价指标平均倒数排名(mean reciprocal rank, MRR)函数,使其适合评分数据集合,然后对其进行平滑化操作和简化操作,最后直接优化这一评价指标。提出的算法易于并行化,可以在大型的真实数据集合上运行。试验结果表明该算法能提升推荐的性能。 相似文献
16.
基于社会网络信息流模型的协同过滤算法 总被引:1,自引:0,他引:1
为提高个性化推荐技术的准确率,首先在多维半马氏过程的状态空间中定义"空状态",得到扩展多维半马氏过程,将其与社会网络分析理论结合,得到社会网络信息流模型,该模型描述了社会网络成员间的信息流动过程.然后基于社会网络信息流模型,提出协同过滤算法SMRR(Semi-Markov and reward renewal).实验表... 相似文献
17.
针对传统协同过滤推荐算法中存在评分数据稀疏性问题,以稀疏的用户打分来确定用户间的相似性可能并不准确.为此,提出了以用户行为对应一定分值代替空缺评分的方法来修正用户I-U评分矩阵,并基于用户角色以权重系数K来约束最近邻的计算.实验表明,改进的算法具有更优的推荐质量. 相似文献
18.
针对当前电子商务网站用户评分过于集中而区分度不明显,以及整数评分可信度不高导致协同过滤推荐效果较差的问题,提出一种改进协同过滤算法. 利用改进的词性路径模板算法挖掘评论中包含的产品特征和情感词,分析并建立评论特征偏好向量;依据评论特征偏好向量计算评论中包含的情感态度,利用用户评论中包含的情感态度对评分进行修正,使得修正后的评分更接近于用户的真实评分意愿;利用修正后的评分计算评分相似度,与偏好相似度结合产生推荐. 实验结果表明,该算法有效地增加了评分区分度与可信度,提高了最近邻居的质量,从而提高了推荐结果的准确度. 相似文献