首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
传统的耐磨钢铁材料难以满足现代矿山装备对关键耐磨部件的需求,陶瓷颗粒增强钢铁基耐磨复合材料成为最具良好应用前景的耐磨材料之一。通过预烧结获得不同体积分数及不同颗粒大小的陶瓷预制体,结合铸渗法制备出氧化锆(ZrO2)增韧氧化铝(Al2O3)陶瓷颗粒增强高铬铸铁(HCCI)基复合材料。结果表明:随着ZTA(ZrO2增韧Al2O3)颗粒体积分数(25%~45%)的增加,ZTA颗粒等效直径(1.7,1.2,0.4 mm)减小,复合材料抗冲击磨损性能随之提高,以颗粒体积分数为45%、等效粒径为0.4 mm时最佳。ZTAp/HCCI复合材料的主要磨损特征是磨损面发生微切削,其主要磨损机制是磨料磨损。  相似文献   

2.
Fe/Al2O3复合材料的制备和性能   总被引:1,自引:0,他引:1  
用石墨埋烧方法制备Fe/Al2O3复合材料,对其力学性能和微观结构进行了分析。结果表明:Fe/Al2O3复合材料的弯曲强度与断裂韧性均随Al2O3含量的升高先升高后降低,当Al2O3含量(质量分数)为70%时,其弯曲强度与断裂韧性分别达到602.49 MPa和9.33 MPa·m1/2,其硬度随Al2O3含量先降低后升高。在烧结过程中在Fe颗粒周围形成一种成分为FeO与FeAl2O4的壳体,在壳体与Fe颗粒之间存在微裂纹缺陷。壳体的形成和壳体与金属颗粒间的微裂纹钝化了外部应力,从而提高了复合材料的韧性。  相似文献   

3.
通过 SEM中静载动态拉伸 , 原位观察和研究了搅拌铸造法制备的 YAl 2P/ Mg-Li-Al 基复合材料裂纹的萌生及扩展机制。结果表明 , 微裂纹萌生位置主要为复合材料的铸造缺陷处、 复合材料的基体中以及颗粒/基体界面处 , 并以在复合材料基体中萌生为主。微裂纹的扩展主要在基体和 YAl 2颗粒/基体界面处进行。主裂纹的长大方向具有选择性 , 裂纹主要沿颗粒贫化区与颗粒富集区的交界处开裂 , 主裂纹扩展到一定程度后 , 试样全面失稳而迅速断裂。基体的断裂失效在 YAl 2P/ Mg2Li2Al复合材料拉伸断裂过程中起很大作用。  相似文献   

4.
将粒径为1~2 mm的ZrO2增韧Al2O3陶瓷颗粒(ZTAp)、高铬合金粉末和黏结剂混合真空烧结制备蜂窝状预制体,再浇注高铬铸铁液制备出ZTAp增强高铬铸铁基复合材料。采用SEM、EDS、XRD分析复合材料的界面微观结构和物相组成,通过三体磨损试验评价复合材料的耐磨性能。结果表明,烧结高铬铸铁基体在铸造过程中发生重熔,与铸造高铬铸铁基体呈冶金结合,ZTAp与金属基体界面结合致密,无裂纹、气孔等缺陷。复合材料三体耐磨性能达到高铬铸铁的3倍以上。将该复合材料应用于制备磨辊件,经过5 000 h服役,柱状区和复合区在磨辊半径方向上的磨损量分别为8.2 mm、5.9 mm,预计寿命可达到高铬铸铁磨辊的2倍以上。   相似文献   

5.
采用反应热压法以Al、B2O3、TiO2粉和Al、B、TiO2粉为原料制备了两种(Al2O3+TiB2+Al3Ti)/Al复合材料。后一种原料粉制备的复合材料从基体中析出了细小的Al3Ti相。研究了应变控制原位生成复合材料的室温低周疲劳行为。结果表明,在应变幅较小时(ε</em>t≤0.3%),不含Al3Ti析出相的材料表现为循环稳定;而在应变幅较大时(ε</em>t≥0.4%), 则表现为第一周的循环硬化和随后的循环软化。在所采用的应变幅下,含Al3Ti析出相的材料均表现为循环稳定。疲劳裂纹萌生部位为Al3Ti相断裂、Al3Ti相与基体的界面开裂和基体中微裂纹。疲劳裂纹穿过基体,绕过Al2O3、TiB2质点扩展。两种复合材料的疲劳寿命均符合Coffin-Manson公式。   相似文献   

6.
作为20世纪90年代兴起的一类连续陶瓷纤维增强陶瓷基复合材料,连续氧化铝纤维增韧氧化铝(Al2O3f/Al2O3)复合材料已经发展为与Cf/SiC、SiCf/SiC等非氧化物复合材料并列的陶瓷基复合材料。以多孔基体实现基体裂纹偏转成为Al2O3f/Al2O3复合材料主要的增韧设计方法,形成的多孔Al2O3f/Al2O3复合材料具有优异的抗氧化性能和高温力学性能,可在高温富氧、富含水汽的中等载荷工况中长时服役,是未来重要的热结构材料。经过近30年的发展,多孔Al2O3f/Al2O3复合材料已被应用于航空发动机、燃气轮机等热端部件。本文综述了多孔Al2O3f...  相似文献   

7.
将纳米ZnO粉末和Al粉球磨后冷压成Al-ZnO预制块,然后将其加到Al-Zn-Cu熔体中进行Al-ZnO原位反应,制备出纳米Al2O3颗粒增强Al-Zn-Cu基复合材料。能谱面扫描分析和透射电镜观察结果表明,复合材料由纳米Al2O3颗粒和Al2Cu析出相两种颗粒/析出相组成。纳米Al2O3颗粒通过异质形核和晶界钉扎,细化了Al-Zn-Cu合金晶粒组织和Al2Cu析出相。原位纳米Al2O3颗粒的生成提高了基体合金的拉伸性能,轧制+热处理使Al2O3/Al-Zn-Cu复合材料的拉伸强度比相同处理的基体合金提高约100%,总伸长率提高约98%。  相似文献   

8.
用机械化学及热压烧结方法成功制备了高致密Ni-20Fe/ Al2O3 纳米复合材料。通过X2ray、FE-SEM、力学性能、磁性能测试, 结果表明, 复合后材料断裂韧性从纯α2Al2O3 相的4. 7 MPa·m1/2 提高到6. 2 MPa·m1/2(19 % (Ni-20Fe) / Al2O3 ) , 断裂方式有沿晶断裂和穿晶断裂两种。当Ni-20Fe 合金的体积百分数达到19 %时, 复合材料的饱和磁化强度达33 emu/ g , 矫顽力为200 Oe , 且在低于500 ℃的情况下, 矫顽力基本不随温度而变, 具有良好的磁热稳定性。   相似文献   

9.
采用等离子喷涂工艺, 制备了WC、ZrO2 、Cr2O3 和Al2O3 陶瓷颗粒/ 镍合金复合涂层。用X 射线衍射研究了陶瓷颗粒复合涂层相的分布; 用里氏硬度计测量陶瓷颗粒/ 镍合金复合涂层的硬度; 用CSS-1110 电子万能试验机研究陶瓷颗粒复合涂层的弯曲断裂性能。对涂层金相组织结构进行二值化处理, 利用Sandbox 法对陶瓷颗粒在金属基体中的分布进行研究, 得到了不同体积分数下陶瓷颗粒复合材料涂层的分维数。结果表明,陶瓷颗粒/ 镍合金复合涂层分维数随陶瓷颗粒含量的增加而增加, 与陶瓷颗粒种类无关; 陶瓷颗粒/ 镍合金复合涂层硬度和分维数随陶瓷颗粒直径减小而增加。随着分维数的增加, 复合涂层弯曲断裂角下降。   相似文献   

10.
采用分步加热固相法成功制备了纯度较高的各向同性负热膨胀材料ZrW2O8 。将ZrW2O8 与ZrO2 按一定比例混合, 在1200 ℃烧结24 h 制备了热膨胀系数可控的ZrW2O8 / ZrO2 复合材料。研究结果表明, 通过改变ZrW2O8 的体积分数, ZrW2O8 / ZrO2 复合材料的热膨胀系数可以控制为负、正或零。当ZrW2O8 的体积分数为37 %时, 复合材料的热膨胀系数接近零。为了得到致密的ZrW2O8 / ZrO2 复合陶瓷, 采用Al2O3 作为烧结剂, 取得了较好的效果。0. 35 wt % Al2O3 的加入可以在不影响复合材料热膨胀性能的前提下, 显著提高复合材料的致密度。   相似文献   

11.
颜建辉  康蓉  唐幸  汪异  邱敬文 《复合材料学报》2021,38(11):3747-3756
多相Mo-12Si-8.5B合金是一种很有应用前景的高温结构材料,为了同时提高Mo-12Si-8.5B合金的强度和韧性,提出了采用纳米ZrO2(Y2O3)强韧化具有双峰晶粒度分布Mo-12Si-8.5B复合材料的方法。首先采用溶胶-凝胶和高温氢还原法制备了纳米Mo-ZrO2(Y2O3)复合粉末,然后以纳米Mo-ZrO2(Y2O3)粉末和微米Mo粉末为原材料,采用放电等离子烧结(SPS)技术制备了具有双峰晶粒度分布的Mo-12Si-8.5B-ZrO2(Y2O3)复合材料。结果表明,随着ZrO2(Y2O3)含量的增加,制备的Mo-ZrO2(Y2O3)纳米粉末的粒度和烧结体相对致密度均逐渐减小,ZrO2(Y2O3)含量小于2.5wt%时,烧结体的相对致密度均大于98.1%。当ZrO2(Y2O3)含量为1.5wt%和2.5wt%时,复合材料具有较高的硬度(9.76~9.98 GPa),抗弯强度(672~678 MPa)和断裂韧性(12.68~12.82 MPa·m1/2)。Mo-12Si-8.5B-ZrO2(Y2O3)复合材料中Mo晶粒细化、粗细Mo晶粒的晶界强化和纳米ZrO2(Y2O3)颗粒第二相强化是提高硬度和抗弯强度主要原因;复合材料中粗晶粒Mo和纳米ZrO2(Y2O3)有助于断裂韧性的提高,材料的增韧机制主要是裂纹偏转和裂纹桥接。   相似文献   

12.
The absence of a chemical reaction at an interface is conventionally thought to be an important criterion in producing a tough ceramic matrix composite (CMC). As a result of this criterion, interphases in CMCs were chosen on the basis of their chemical reactivity. A weak interface results in crack deflection, crack bridging, and, in fiber-reinforced ceramics, fiber pullout, resulting in an increased fracture toughness. In this paper, we present microstructural observations on alumina (Al2O3)–barium zirconate (BaZrO3) laminated composites wherein the reaction products that develop during processing resulted in sharp interfaces and appear to be weak enough to deflect cracks. These in situ reaction products in Al2O3–BaZrO3 laminated composites were characterized with the use of a scanning electron microscope, an electron microprobe, and a transmission electron microscope. The phases that develop, ZrO2, BaO·Al2O3, and BaO·6 Al2O3, produced sharp interfaces and are arranged in a sequence that could be predicted by using information from the phase diagram.  相似文献   

13.
肖华强  赵思皓 《复合材料学报》2020,37(10):2501-2511
通过对比分析Ti3AlC2-Al2O3/TiAl3复合材料在纯腐蚀、纯磨损及熔蚀-磨损三种条件下的材料流失特征,研究了Ti3AlC2-Al2O3/TiAl3复合材料在Al液中的熔蚀-磨损行为及熔蚀与磨损的交互作用机制。结果表明,Ti3AlC2-Al2O3/TiAl3复合材料在Al液中的熔蚀-磨损体积损失比H13钢的体积损失低了两个数量级,随着载荷和转速的上升,Ti3AlC2-Al2O3/TiAl3复合材料的磨损由磨粒磨损逐渐向黏着磨损转变。Ti3AlC2-Al2O3/TiAl3复合材料的熔蚀、磨损交互作用率的最大值为47.5%,在低载荷或低转速条件下由于铝熔体的润滑作用,Ti3AlC2-Al2O3/TiAl3复合材料甚至表现出负的交互作用。这一方面是由于Ti3AlC2-Al2O3/TiAl3复合材料在Al液中腐蚀时不生成其它界面产物,而仅为极少量Ti元素的溶解;另一方面则是由于TiAl3基体与Al2O3二者所形成的空间网络状结构改善了Ti3AlC2-Al2O3/TiAl3复合材料在Al液中的耐磨损性能。   相似文献   

14.
采用3种不同形貌的Al2O3原料对注凝成型制备ZrO2/Al2O3(ZTA)陶瓷工艺中悬浮体的流变性能进行了研究。以低毒的单体N,N-二甲基丙烯酰胺(DMAA)制备了ZrO2/Al2O3坯体和陶瓷。讨论了3种不同形貌的Al2O3原浆料的分散剂用量、球磨时间和固含量对浆料流变性的影响。Al2O3粉体呈扁平状有利于降低浆料的黏度,Al2O3粉体呈棒状对生坯强度的提高有利。制得的3种ZrO2/Al2O3坯体颗粒间结合紧密,抗弯强度分别达到21.45,19.87,25.90 MPa。Al2O3粉体呈颗粒状有利于最终陶瓷力学性能的提高,陶瓷的抗弯强度及断裂韧性分别为680 MPa和7.49 MPa·m1/2,453.1 MPa和6.8 MPa·m1/2,549.4 MPa和6.34 MPa·m1/2。  相似文献   

15.
利用Al-TiO2-TiC体系,通过机械球磨和反应热压制备出Ti3AlC2与Al2O3两相原位内生成增强TiAl3金属基复合材料。借助DSC、XRD、SEM和TEM研究了复合材料的反应机制、显微组织、力学性能及抗氧化性能。结果表明,球磨50h后的复合粉末经1 250℃/50 MPa保温10min烧结后可得到组织均匀细小且致密的Ti3AlC2-Al2O3/TiAl3复合材料,其密度、维氏硬度、室温三点弯曲强度、断裂韧性及压缩强度分别为3.8g/cm3、8.4GPa、658.9 MPa、7.9 MPa·m1/2和1 742.0 MPa,1 000℃的高温压缩强度为604.1 MPa。Ti3AlC2-Al2O3/TiAl3复合材料的增韧机制主要包括Ti3AlC2和Al2O3颗粒的剥离、Ti3AlC2相导致的裂纹偏转和桥接以及Ti3AlC2颗粒的变形及层裂。Ti3AlC2-Al2O3/TiAl3复合材料在700~1 000℃温度区间内生成的氧化层虽不致密,但仍表现出优异的抗高温循环氧化性能。  相似文献   

16.
采用浸胶法制备了一系列SiO2-Al2O3/聚酰亚胺(SiO2-Al2O3/PI)五层耐电晕薄膜Am An PAn Am,其中中间层(P)为纯PI薄膜,外层(Am)、次外层(An)分别为SiO2-Al2O3掺杂不同质量分数的纳米SiO2-Al2O3/PI薄膜。采用TEM、FTIR、宽频介电谱仪、电导电流测试仪、耐电晕测试仪、介电强度测试仪和拉伸实验机对五层纳米复合PI耐电晕薄膜的微观结构、介电性能和力学性能进行了表征和测试。结果表明,SiO2-Al2O3/PI复合薄膜掺杂层形成了分布均匀的有机/无机复合结构;SiO2-Al2O3纳米粒子的保护作用是影响复合材料耐电晕性能的主要因素,复合薄膜A32A16PA16A32的耐电晕寿命最大,为23.4 h;外层掺杂量对五层SiO2-Al2O3/PI复合材料的介电强度影响较大,复合薄膜A20A28PA28A20的介电强度最大,为302.3 kV/mm;通过对五层复合结构的设计,可以在兼顾材料力学性能的同时,提高其耐电晕寿命和介电强度。  相似文献   

17.
TiB2–Al2O3 composites with Ni–Mo as sintering aid have been fabricated by a hot-press technique at a lower temperature of 1530 °C for 1 h, and the mechanical properties and microstructure were investigated. The microstructure consists of dispersed Al2O3 particles in a fine-grained TiB2 matrix. The addition of Al2O3 increases the fracture toughness up to 6.02 MPa m1/2 at an amount of 40 vol.% Al2O3 and the flexural strength up to 913.86 MPa at an amount of 10 vol.% Al2O3. The improved flexural strength of the composites is a result of higher density than that of monolithic TiB2. The increase of fracture toughness is a result of crack bridging by the metal grains on the boundaries, and crack deflection by weak grain boundaries due to the bad wetting characters between Ni–Mo and Al2O3.  相似文献   

18.
通过机械分散技术制备了纳米Al2O3 /环氧、酚酞聚芳醚酮/环氧和纳米Al2O3/ 酚酞聚芳醚酮/环氧复合材料,并对比研究了其拉伸模量、拉伸强度、断裂性能和热性能。结果表明:纳米Al2O3及酚酞聚芳醚酮在环氧树脂中呈均匀的分散状态;纳米Al2O3使环氧树脂拉伸模量增加,使拉伸强度先增后降;酚酞聚芳醚酮使环氧树脂拉伸模量略微下降,对拉伸强度影响不明显;纳米Al2O3/酚酞聚芳醚酮/环氧三元复配体系的拉伸模量和拉伸强度呈非单调变化的趋势;纳米Al2O3和酚酞聚芳醚酮对环氧树脂均有增韧作用,三元复配体系增韧效果更明显,表现出协同增韧效果;高含量纳米Al2O3降低了环氧树脂的初始分解温度,而其余填料对环氧树脂热稳定性具有改善作用,填料均使环氧树脂玻璃化转变温度有所降低。  相似文献   

19.
通过球磨分散法和熔融共混法制得纳米Sb2O3/溴化环氧树脂-聚丙烯(BEO-PP)阻燃复合材料试样。采用XRD、DSC、拉伸和冲击性能测试,研究了纳米Sb2O3/BEO-PP阻燃复合材料的力学性能及其增强机制。研究结果表明:采用球磨法改性后的纳米Sb2O3颗粒在PP基体中的分散性和黏结性能得到明显改善;纳米Sb2O3颗粒的加入可改善PP基复合材料的强韧性;随着纳米Sb2O3质量分数的升高,纳米Sb2O3/BEO-PP复合材料的力学性能呈现出先升后降的趋势,PP基体的结晶度逐渐增高;当纳米Sb2O3颗粒添加量为2wt%时,纳米Sb2O3/BEO-PP复合材料表现出优异的综合性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号