首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以糠醇为碳源,模板(AAO)碳化法制备了高纯度的碳纳米管,硝酸铜作为金属源,以溶液浸渍法合成了碳纳米管表面修饰的铜纳米粒子。利用XRD、TEM、SEM、能谱仪和拉曼分析等手段对样品进行了结构和形貌的表征。结果表明:粒径为10~20nm的铜纳米颗粒均匀负载到孔径在90~100nm的碳纳米管表面。电子衍射证明,这些颗粒为单质铜和Cu2O的纳米单晶,且铜纳米粒子具有很好的结晶度。  相似文献   

2.
采用原位生成法合成了不同纳米TiO2含量的PET纳米复合树脂,通过FTIR、SEM、TG、DSC表征和分析了PET/纳米TiO2复合树脂的化学结构、纳米粒子在PET基体中的分散性和无机纳米粒子的引入对PET树脂热性能的影响,结果表明,原位生成的纳米粒子在PET基体中具有良好的分散性,其尺度在80nm左右.  相似文献   

3.
采用原位生成法合成了不同纳米TiO2含量的PET纳米复合树脂,通过FTIR、SEM、TG、DSC表征和分析了PET/纳米TiO2复合树脂的化学结构、纳米粒子在PET基体中的分散性和无机纳米粒子的引入对PET树脂热性能的影响,结果表明,原位生成的纳米粒子在PET基体中具有良好的分散性,其尺度在80nm左右.  相似文献   

4.
银负载细菌纤维素纳米复合材料的制备及抗菌性能研究   总被引:1,自引:0,他引:1  
陈文彬  张秀菊  林志丹 《材料导报》2011,25(14):6-10,19
利用细菌纤维素超精细网络结构和高持水率的特点,在细菌纤维素上通过硼氢化钠(NaBH4)还原硝酸银中的Ag+原位生成纳米银颗粒,并对其微观结构等进行表征,同时对银负载细菌纤维素纳米复合膜的抗菌性能和生物相容性进行研究。XRD结果表明纳米银颗粒具有较完善的结晶结构,且银晶体为面心立方结构;XRF检测表明复合材料中含有Ag元素;由UV-Vis可知Ag/BC纳米复合材料在424nm处出现了Ag的吸收峰;从SEM图可看出随着硝酸银浓度的增大,细菌纤维素微纤表面负载的银颗粒增多,粒径大约为50~80nm。抗菌实验结果说明Ag/BC纳米复合材料具有很强的抗菌性能,对大肠杆菌和金黄色葡萄球菌的最大抑菌率分别达到99.4%和98.4%。细胞相容性实验表明,Ag/BC纳米复合材料还具有良好的细胞相容性。因此将其用于抗菌伤口敷料会有广阔的应用前景。  相似文献   

5.
利用介孔组装,可以进行纳米复合材料结构和功能设计。通过溶胶-凝胶方法,采用混合、浸泡和氢热还原工艺,获得纳米镍/介孔二氧化硅复合材料。运用DSC、XRD、XPS、TEM等手段对纳米镍/介孔二氧化硅复合材料进行表征。结果表明,纳米金属Ni颗粒的尺寸由介孔SiO2的结构和孔径分布决定,受还原温度和成分等影响,在8~20nm范围变化,浸泡法更容易获得纳米金属颗粒均匀分布的复合材料。由于SiO2介孔结构连通,纳米Ni表面存在氧化,纳米颗粒存在于介孔中形成壳结构。介孔二氧化硅基体中添加稀土元素Ce,有利于增强介孔基体骨架强度,限制纳米颗粒聚集长大。   相似文献   

6.
颗粒增强铜基复合材料的研究进展   总被引:7,自引:1,他引:7  
为了研究颗粒增强相对铜基复合材料的性能的影响,对不同类型铜基复合材料的特点及其制备方法进行对比分析,探讨了颗粒相的生成机制,重点论述了颗粒增强相的类型及铜基复合材料的制备工艺.结果表明在铜基体中引入纳米分散相进行复合,可以使铜合金的力学性能得到极大改善,其中机械合金化和原位复合化学反应获得的纳米陶瓷颗粒在铜基复合材料中效果最佳;反应喷射沉积成型法、液相反应原位生成法和机械合金化法在制备纳米粒子增强铜基复合材料方面有着良好的应用前景.  相似文献   

7.
石墨烯-银纳米粒子复合材料的制备及表征   总被引:3,自引:0,他引:3  
以无毒、绿色的葡萄糖为还原剂, 在没有稳定剂、温和的液相反应条件下, 同时还原氧化石墨和银氨溶液中的银氨离子, 原位制备石墨烯-银纳米粒子复合材料. 采用X射线衍射、红外吸收光谱、拉曼光谱、扫描电镜和透射电子显微镜对所制备的石墨烯-银纳米粒子复合材料进行了表征. 结果表明: 氧化石墨和银离子在反应过程中同时被葡萄糖还原, 银纳米粒子均匀分布于石墨烯片层之间, 生成的银纳米粒子中大多数存在着孪晶界, 银纳米粒子的大小和分布受硝酸银用量的影响, 在合适的银离子浓度下, 负载在石墨烯片层上的银纳米粒子的粒径分布集中在25 nm左右; 复合材料中石墨烯的拉曼信号由于银粒子的存在增强了7倍.  相似文献   

8.
反相微乳液模板原位聚合制备和表征纳米AgCl/PMMA复合材料   总被引:5,自引:0,他引:5  
用甲基丙烯酸甲酯(MMA)作油相,反相微乳液作为模板制备了纳米氯化银(AgCl)粒子,再进行原位聚合制备了纳米AgCl/PMMA复合材料。用电导法表征了微乳液的结构。分析了温度对微乳液稳定性的影响;TEM分析表明,纳米AgCl的尺寸小于100nm,SEM及红外分析表明纳米AgCl粒子是均匀地存在于PMMA基材中,MMA聚合完全;动态力学测试(DMTA)复合材料发现纳米AgCl粒子起到“交联剂”作用,使复合材料的储能模量上升。  相似文献   

9.
在超声作用下利用异丙基十二烷基磺酰钛酸酯改性Al2O3纳米粒子,然后把改性纳米Al2O3粒子及LLDPE颗粒引入密炼机中,以熔融共混方法制备LLDPE/纳米Al2O3复合材料.采用FESEM对复合材料中纳米粒子的分散形态进行表征,结果表明,当纳米Al2O3粒子含量为3%时,绝大多数的纳米粒子以<100nm的尺寸均匀分散在基体中;采用FTIR对纳米复合材料的结构进行表征,结果表明,纳米Al2O3与LLDPE之间形成了化学键合结构;力学分析表明,纳米复合材料的拉伸强度及断裂伸长率均有所增加;采用SEM观察拉伸断裂面的形貌,结果表明,适量的纳米Al2O3粒子可以增强、增韧聚合物基体,而基体和纳米粒子的相容性差时,会逐渐引入缺陷.  相似文献   

10.
针对纳米粒子易团聚的特点, 利用乳液聚合方法制备纳米Al2O3 / PS 复合粒子。用TEM、FTIR 对复合粒子结构进行了表征。结果表明, 所制备的复合粒子具备以纳米氧化铝为核、以聚苯乙烯为壳的核2壳式结构, 而且包覆层厚度大约为10~20 nm。用复合粒子改性选区激光烧结制备聚苯乙烯基纳米复合材料, 通过SEM 和FE2SEM 研究纳米复合材料烧结体的显微结构, 发现纳米粒子较好地分散在聚合物基体中, 且纳米氧化铝与聚合物基体之间的界面相容性和粘结性较好, 烧结体结构较致密。   相似文献   

11.
Huang J  Wang X  Wang ZL 《Nano letters》2006,6(10):2325-2331
The fine structure of the wing scale of a Morpho Peleides butterfly was examined carefully, and the entire configuration was completely replicated by a uniform Al(2)O(3) coating through a low-temperature ALD process. An inverted structure was achieved by removing the butterfly wing template at high temperature, forming a polycrystalline Al(2)O(3) shell structure with precisely controlled thickness. Other than the copy of the morphology of the structure, the optical property, such as the existence of PBG, was also inherited by the alumina replica. Reflection peaks at the violet/blue range were detected on both original wings and their replica, while a simple alumina coating shifted the reflection peak to longer wavelength because of the change of periodicity and refraction index. The alumina replicas also exhibited similar functional structures as waveguide and beam splitter, which may be used as the building blocks for photonic ICs with high reproducibility and lower fabrication cost compared to traditional lithography techniques.  相似文献   

12.
The replication of butterfly wing in TiO2 with ordered mesopores assembled inside in situ was prepared by the method of ultrasonication and then calcination. The resultant replica presents high surface area, excellent light absorbance in visible range of 400-500 nm and a narrowest band-gap at 2.94 eV in comparison with TiO2 replica without ordered mesopores and commercial TiO2 powder, attributing to the combination of the functionality from the inorganic oxide and the fine hierarchical biological structures and well-distributed mesopores. The facile method is expected to be used for mass product of TiO2 replicas from butterfly wings for potential application in Dye-Sensitized Solar Cells.  相似文献   

13.
Polypyrrole (PPy) with photonic crystal structures were synthesized from Morpho butterfly wings using a two-step templating process. In the first step photonic crystal SiO2 butterfly wings were synthesized from Morpho butterfly wings and in the second step the SiO2 butterfly wings were used as templates for the replication of PPy butterfly wings using an in situ polymerization method. The SiO2 templates were then removed from the PPy butterfly wings using a HF solution. The hierarchical structures down to the nanometer level, especially the photonic crystal structures, were retained in the final PPy replicas, as evidenced directly by field-emission scanning electron microscope (FE-SEM) and transmission electron microscopy (TEM). The optical properties of the resultant PPy replicas were investigated using reflectance spectroscopy and the PPy replicas exhibit brilliant color due to Bragg diffraction through its ordered periodic structures. The preliminary biosensing application was investigated and it was found that the PPy replicas showed a much higher biological activity compared with PPy powders through their response to dopamine (DA), probably due to the hierarchical structures as well as controlled porosity inherited from Morpho butterfly wings. It is expected that our strategy will open up new avenues for the synthesis of functional polymers with photonic crystal structures, which may form applications as biosensors.  相似文献   

14.
Te nanowires and butterfly nanostructures have been fabricated by template-free electrodeposition (TFED) in aqueous solution. By high-resolution transmission electron microscopy (HRTEM) study, the favored growth directions of the nanowires and the wings of the butterfly nanostructures were determined to be along the [0001] direction of trigonal Te, and the twinning plane of the butterfly nanostructures was (11-22). The cathodoluminescence measurements carried out at different positions of the butterfly nanostructure indicated that the twin boundaries influenced the photoemission efficiency.  相似文献   

15.
Ding Y  Xu S  Zhang Y  Wang AC  Wang MH  Xiu Y  Wong CP  Wang ZL 《Nanotechnology》2008,19(35):355708
Although butterfly wings and water strider legs have an anti-wetting property, their working conditions are quite different. Water striders, for example, live in a wet environment and their legs need to support their weight and bear the high pressure during motion. In this work, we have focused on the importance of the surface geometrical structures in determining their performance. We have applied an atomic layer deposition technique to coat the surfaces of both butterfly wings and water strider legs with a uniform 30?nm thick hydrophilic Al(2)O(3) film. By keeping the surface material the same, we have studied the effect of different surface roughness/structure on their hydrophobic property. After the surface coating, the butterfly wings changed to become hydrophilic, while the water strider legs still remained super-hydrophobic. We suggest that the super-hydrophobic property of the water strider is due to the special shape of the long inclining spindly cone-shaped setae at the surface. The roughness in the surface can enhance the natural tendency to be hydrophobic or hydrophilic, while the roughness in the normal direction of the surface is favorable for forming a composite interface.  相似文献   

16.
Butterfly wing skeleton is a widely used hard-template in recent years for fabricating photonic crystal structures. However, the smallest construction units for the most species of butterflies are commonly larger than ∼50 nm, which greatly hinders their applications in designing much smaller functional parts down to real “nano scale”. This work indicates, however, that hollow ZrO2 nanowires with ∼2.4 μm in length, ∼35 nm in diameter and ∼12 nm in wall thickness can be synthesized via the selection of suitable butterfly bio-templates followed by heat processing. Especially, the successful fabrication of these naturally cross-linked ZrO2 nanotubes suggests a new optional approach in fabricating assembled nano systems.  相似文献   

17.
Grazing-incidence iridescence from a butterfly wing   总被引:1,自引:0,他引:1  
The Troides magellanus butterfly exhibits a specialized iridescence that is visible only when its hind wings are both illuminated and viewed at near-grazing incidence. The effect is due to the presence of a constrained bigrating structure in its wing scales that has been previously observed in only one other species of butterfly (Ancyluris meliboeus). However, whereas the Ancyluris presents wide-angle flickering iridescence, the Troides butterfly uses pigmentary coloration at all but a narrow tailored range of angles, producing a characteristic effect.  相似文献   

18.
The two-angle conformally evaporated-film-by-rotation technique (TA-CEFR) was devised to coat the wings of the monarch butterfly with nickel in order to form a 500-nm thick bioreplica thereof. The bioreplica exhibits structural colours that are completely obscured in actual wings by pigmental colours. Thus, the TA-CEFR technique provides a way to replicate, study and exploit hidden morphologies of biological surfaces.  相似文献   

19.
Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high‐performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large‐scale man‐made structures than those offered by original butterfly wings.  相似文献   

20.
Tada H  Mann SE  Miaoulis IN  Wong PY 《Applied optics》1998,37(9):1579-1584
Multilayer thin-film structures in butterfly wing scales produce a colorful iridescence from reflected sunlight. Because of optical phenomena, changes in the angle of incidence of light and the viewing angle of an observer result in shifts in the color of butterfly wings. Colors ranging from green to purple, which are due to nonplanar specular reflection, can be observed on Papilio blumei iridescent scales. This refers to a phenomenon in which the curved surface patterns in the thin-film structure cause the specular component of the reflected light to be directed at various angles while affecting the spectral reflectivity at the same time by changing the optical path length through the structure. We determined the spectral reflectivities of P. blumei iridescent scales numerically by using models of a butterfly scale microstructure and experimentally by using a microscale-reflectance spectrometer. The numerical models accurately predict the shifts in spectral reflectivity observed experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号