首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we have demonstrated that the nanocrystal created by combining the self-assembled block copolymer thin film with regular semiconductor processing can be applicable to non-volatile memory device with increased charge storage capacity over planar structures. Self-assembled block copolymer thin film for nanostructures with critical dimensions below photolithographic resolution limits has been used during all experiments. Nanoporous thin film from PS-b-PMMA diblock copolymer thin film with selective removal of PMMA domains was used to fabricate nanostructure and nanocrystal. We have also reported about surface morphologies and electrical properties of the nano-needle structure formed by RIE technique. The details of nanoscale pattern of the very uniform arrays using RIE are presented. We fabricated different surface structure of nanoscale using block copolymer. We also deposited Si-rich SiNx layer using ICP-CVD on the silicon surface of nanostructure. The deposited films were studied after annealing. PL studies demonstrated nanocrystal in Si-rich SiNx film on nanostructure of silicon.  相似文献   

2.
Highly dense hexagonally ordered two-dimensional arrays of Si nanocrystals embedded in SiO(2)?nanodots were fabricated on a silicon substrate by using a self-assembled porous anodic alumina thin film as a masking layer through which electrochemical oxidation of the Si substrate and ultralow energy Si implantation took place. After removal of the alumina film and high temperature annealing of the samples, hexagonally ordered Si nanocrystals embedded within SiO(2) nanodots were obtained, having sizes in the few tens of nanometer range. The fabricated ordered structures show significant potential for applications either in basic physics experiments or as building blocks for nanoelectronic and nanophotonic devices.  相似文献   

3.
The block copolymer self-assembly approach has received great attention in recent years as a possible way to overcome the limits of conventional lithography and to fabricate sub-22 nm structures. At this level, precise nanometric control is crucial for technological applications and the search for a flexible and reproducible protocol is a great challenge. The polystyrene-b-poly(methylmethacrylate) (PS-b-PMMA) system, with a styrene fraction of 0.71, spontaneously separates into a periodic array of hexagonally packed PMMA cylinders embedded in a matrix of PS and, under suitable processing conditions, this is perpendicularly oriented with respect to the underlying substrate. The selective removal of the PMMA allows us to obtain a nanoporous PS matrix with well-defined pore dimensions. Perpendicular orientation of the PMMA cylinders requires surface neutralization by means of a suitable PS-r-PMMA random copolymer. The choice of the random copolymer is not trivial, because different PS-r-PMMA copolymers strongly affect the characteristics of the PS-b-PMMA film deposited on it. In this paper the effects of the selected PS-r-PMMA on the arrangement as well as on the peculiar dimensions (pore diameter, pore to pore distance) of the final nanoporous PS thin film are studied. Reliable protocols for the fabrication of a disposable polymeric mask are proposed in view of its application in advanced lithographic processes.  相似文献   

4.
Park WI  Yoon JM  Park M  Lee J  Kim SK  Jeong JW  Kim K  Jeong HY  Jeon S  No KS  Lee JY  Jung YS 《Nano letters》2012,12(3):1235-1240
We report the direct formation of ordered memristor nanostructures on metal and graphene electrodes by a block copolymer self-assembly process. Optimized surface functionalization provides stacking structures of Si-containing block copolymer thin films to generate uniform memristor device structures. Both the silicon oxide film and nanodot memristors, which were formed by the plasma oxidation of the self-assembled block copolymer thin films, presented unipolar switching behaviors with appropriate set and reset voltages for resistive memory applications. This approach offers a very convenient pathway to fabricate ultrahigh-density resistive memory devices without relying on high-cost lithography and pattern-transfer processes.  相似文献   

5.
A combined process of electrochemical formation of self-assembled porous anodic alumina thin films on a Si substrate and Si etching through the pores was used to fabricate ideally ordered nanostructures on the silicon surface with a long-range, two-dimensional arrangement in a hexagonal close-packed lattice. Pore arrangement in the alumina film was achieved without any pre-patterning of the film surface before anodization. Perfect pattern transfer was achieved by an initial dry etching step, followed by wet or electrochemical etching of Si at the pore bottoms. Anisotropic wet etching using tetramethyl ammonium hydroxide (TMAH) solution resulted in pits in the form of inverted pyramids, while electrochemical etching using a hydrofluoric acid (HF) solution resulted in concave nanopits in the form of semi-spheres. Nanopatterns with lateral size in the range 12-200?nm, depth in the range 50-300?nm and periodicity in the range 30-200?nm were achieved either on large Si areas or on pre-selected confined areas on the Si substrate. The pore size and periodicity were tuned by changing the electrolyte for porous anodic alumina formation and the alumina pore widening time. This parallel large-area nanopatterning technique shows significant potential for use in Si technology and devices.  相似文献   

6.
The well-arrayed Pd and Au nanoparticle thin films were successfully prepared by making use of self-assembled PS-b-P4VP block copolymer (BCP) as a mask for the reduction of PdCl2 deposited on glass substrate. The films consisted of spherialcal nanoparticles with an average diameter of about 45 nm. For monitoring the size, shape and array formation of Pd nanopaticle films, this procedure was proved better to the conventional process in which PdCl2 impregnated in the channels of self assembled BCP film is reduced to form nanoparticle array. This observations of Pd nanoparticle array film formation is supported by the AFM and UV-VIS studies of Au nanoparticle array films formed by conventional method.  相似文献   

7.
采用一锅逐步加料的原子转移自由基聚合方法(ATRP)制备了一种蝌蚪型多面体低聚倍半硅氧烷(POSS)丙烯酸酯嵌段共聚物, 并用静态呼吸图法制备该共聚物蜂窝状结构的多孔膜, 研究成膜条件如溶剂种类、聚合物浓度、相对湿度等对聚合物多孔膜形貌的影响, 以及空气/硅片、空气/水和空气/冰3种成膜界面对膜形貌的影响。结果表明, 在空气/硅片界面上, 以三氯甲烷为溶剂, 环境相对湿度为80%, 浓度为20 mg·mL-1时, 可形成圆形孔的多孔膜, 孔排列成六方形; 在相同的条件下在空气/水和空气/冰界面上均可制备出类似规整形貌的多孔结构, 但多孔膜的孔径、孔间距有很大的不同, 在空气/冰界面上的孔径更小、孔间距更窄。这种多孔膜具有良好的疏水性, 且其接触角随着孔径的减小而增大; 该多孔膜还具有良好的耐强酸强碱性和耐热性能。  相似文献   

8.
采用硅烷偶联剂对在多孔性绝缘Al2O3膜基底上形成的导电聚吡咯(polypyrrole, PPy)薄膜的形貌及导电性能进行了改善,并探讨了硅烷自组装膜与导电PPy薄膜的形成机理.用硅烷偶联剂对Al2O3膜表面进行改性后,形成了与基底牢固结合的硅烷自组装膜,然后通过化学聚合法在自组装膜上制备得到了均匀致密的PPy薄膜.结果表明:硅烷偶联剂有效地改善了PPy薄膜的均匀性及其与基底的附着性,电导率从5.4S/cm提高到了16.6S/cm.  相似文献   

9.
A method for selective formation of reproducible, high fidelity and controllable nano and micrometer size porous Si areas over n-type Si wafers is provided. A 400 nm thick Silicon Nitride layer was used as the mask layer while Platinum and Palladium nanoparticles were deposited over the unprotected areas to obtain porous areas through metal assisted chemical etching process. Nanoparticles were deposited by electroless plating solutions containing H2PtCl6 and PdCl2. Good controls over pore size and depth were obtained with well defined and sharp edges of the patterned areas. The results were compared to porous structures obtained via electrochemical etching process, indicating the superiority of metal assisted etching in terms of its simplicity as well as the ability of Silicon Nitride layer acting as the mask layer.  相似文献   

10.
用MOCVD方法在p型单晶Si(100)基片上外延SiC层,再用直流溅射在SiC层上生长ZnO薄膜,制备出ZnO/SiC/Si异质结构,用XRD和AFM分析了ZnO/SiC/Si和ZnO/Si异质结构中表层ZnO的结构和形貌的差别,研究了这种异质结构的特性.结果表明,在Si(100)基片上外延生长出的是高取向、高结晶质量的SiC(100)层.这个SiC层缓冲层使在Si基片上外延生长出了高质量ZnO薄膜,因为ZnO与SiC的晶格失配比ZnO与Si的晶格失配更低.  相似文献   

11.
Q.X. Wang  S.H. Liang 《Vacuum》2011,85(11):979-985
An W-10 wt.%Ti alloy target was prepared by the W-Ti ball-milled powders, and W-Ti thin ?lms were deposited by dc magnetron sputtering on Si substrates. Then Cu/W-Ti/Si structures were prepared after Cu films were deposited on the W-Ti/Si structures. The results show that W-Ti alloy has a single phase structure with fine grain size. The structures of W-Ti thin films evolved from an amorphous film to a dual phase structure with bcc W and hcp Ti, followed by W-Ti solid solution with increasing sputtering powers. W-Ti thin ?lms can effectively block against Cu diffusion and maintain good adhesion strength with Cu ?lms at 600 °C. The failure mechanism of the crystal W-Ti films is related to the grain boundary which provides fast diffusion paths for Cu and Si atoms, while the amorphous W-Ti diffusion barrier layer is directly related to the thermal stress and interface reaction.  相似文献   

12.
对MEMS用具有绝热性能的多孔硅基底上沉积的热敏感薄膜进行了研究.首先用电化学方法制备多孔硅,分别在多孔硅基底和硅基底上通过溅射镀膜方法沉积氧化钒、Cu、Au热敏薄膜,测试多孔硅基底和硅基底上的氧化钒及金属薄膜电阻的热敏特性.结果表明,在多孔硅基底表面沉积的热敏薄膜具有与硅基表面热敏薄膜同样的热敏特性且表现出更高的灵敏度;此外,对沉积在不同制备条件得到的多孔硅上的氧化钒薄膜电阻热敏特性进行比较,发现随着孔隙率和厚度的增加,多孔硅的绝热性能提高,其上沉积的氧化钒薄膜电阻热敏特性增强.  相似文献   

13.
Coassemblies of block copolymers and inorganic precursors offer a path to ordered inorganic nanostructures. In thin films, these materials combined with domain alignment provide highly robust nanoscopic templates. We report a simple path to control the morphology, scaling, and orientation of ordered mesopores in organosilicate thin films through the coassembly of a diblock copolymer, poly(styrene-b-ethylene oxide) (PS-b-PEO), and an oligomeric organosilicate precursor that is selectively miscible with PEO. Continuous films containing cylindrical or spherical pores are generated by varying the mixing composition of symmetric PS-b-PEO and an organosilicate precursor. Tuning interfacial energy at both air/film and film/substrate interfaces allows the control of cylindrical pore orientation normal to the supported film surfaces. Our method provides well-ordered mesoporous structures within organosilicate thin films that find broad applications as highly stable nanotemplates.  相似文献   

14.
Asymmetric superstructure formed in a block copolymer via phase separation   总被引:1,自引:0,他引:1  
Self-assembly of amphiphilic block copolymers into well-ordered structures has attracted significant interest over the past decade. An especially attractive application of block-copolymer self-assembly is the formation of isoporous membranes. A major problem in this process is the lack of sufficient long-range order and the difficulty of up-scaling due to the time-consuming preparation steps. Here, we report an innovative and simple method to prepare isoporous membranes with nanometre-sized pores. The combination of the industrially well-established membrane formation method by non-solvent-induced phase separation with the self-assembly of a block copolymer is demonstrated. The result is the creation of an integral asymmetric membrane of a block copolymer with a highly ordered thin layer on top of a non-ordered sponge-like layer. This straightforward and very fast one-step procedure for membrane formation is reported for the first time. The developed membrane has the potential for highly selective separation.  相似文献   

15.
大分子自组装体系及自组装功能膜结构的研究   总被引:5,自引:0,他引:5  
本文主要介绍了3种大分子自组装体系,含硫化合物的在重金属表面的自组装功能膜、聚合物在溶液状态下的自组装体系和聚合物基材上的自组装功能膜。文中还介绍了表征自组分析方法,着重介绍了用于自组装功能膜表面、界面结构分析的两种,红外光谱法和原子力显微镜。  相似文献   

16.
High density arrays of nanostructures over a large area can be formed on a range of substrates, such as glass, GaN, SiO2 deposited silicon wafer, etc. by the self-assembly of PS-b-PMMA block copolymers. The morphology of the polymer surface is strongly dependent on the thickness of the polymer layer. It is necessary to control the size and shape in order to get the desired properties. The deposition of a gold thin film on polymer-patterned glass followed by the removal of the remaining part of the polymer results in patterned gold on glass, which can be used as a transparent conducting electrode, where the conductivity and transparency depends on the thickness of gold and as well as on the connectivity of the gold pattern. Similarly, the polymer pattern can be transferred to an underlying GaN layer in an as grown LED, which increases the photoluminescence intensity making it useful as a photonic crystal.  相似文献   

17.
Patterned nanoscale materials with controllable characteristic feature sizes and periodicity are of considerable interest in a wide range of fields, with various possible applications ranging from biomedical to nanoelectronic devices. Block-copolymer (BC)-based lithography is a powerful tool for the fabrication of uniform, densely spaced nanometer-scale features over large areas. Following this bottom-up approach, nanoporous polymeric films can be deposited on any type of substrate. The nanoporous periodic template can be transferred to the underlying substrate by dry anisotropic etching. Nevertheless the physical sizes of the polymeric mask represent an important limitation in the implementation of suitable lithographic protocols based on BC technology, since the diameter and the center-to-center distance of the pores cannot be varied independently in this class of materials. This problem could be overcome by combining block copolymer technology with atomic layer deposition (ALD): by means of BC-based lithography a nanoporous SiO2 template, with well-reproducible characteristic dimensions, can be fabricated and subsequently used as a backbone for the growth of perfectly conformal thin oxide films by ALD. In this work polystyrene-b-poly(methylmethacrylate) (PS-b-PMMA) BC and reactive ion etching are used to fabricate hexagonally packed 23 nm wide nanopores in a 50 nm thick SiO2 matrix. By ALD deposition of Al2O3 thin films onto the nanoporous SiO2 templates, nanostructured Al2O3 surfaces are obtained. By properly adjusting the thickness of the Al2O3 film the dimension of the pores in the oxide films is progressively reduced, with nanometer precision, from the original size down to complete filling of the pores, thus providing a simple and fast strategy for the fabrication of nanoporous Al2O3 surfaces with well-controllable feature size.  相似文献   

18.
A facile process for the one-step preparation of a fluoropolymer superhydrophobic polymer-coated surface under an ambient atmosphere was reported in this study. The block copolymer of polystyrene-block-poly (2,2,3,4,4,4-hexafluorobutyl-methacrylate), synthesized by atom transfer radical polymerization, was dissolved in a selective solvent. With the evaporation of the solvent, the block copolymer self-assembled into core/shell micelles, forming a grain-structured superhydrophobic film. The contact angle and sliding angle of the film were measured as 152.3° and 9.2°, respectively, demonstrating excellent superhydrophobic property and stability. The superior performance should ascribe to the introducing fluorine into the copolymer and the grain-like rough morphology of the film.  相似文献   

19.
Flexible silicone membranes are key components for tunable optical lenses. The elastic operation of the membranes impedes the use of classical layer systems for an antireflective (AR) effect. To overcome this limitation, we equipped optical elastomer membranes with "moth-eye" structures directly in the flexible silicone substrate. The manufacturing of the AR structures in the flexible membrane includes a mastering process based on block copolymer micelle nanolithography followed by a replication method. We investigate the performance of the resulting AR structures under strain of up to 20% membrane expansion. A significant transmittance enhancement of up to 2.5% is achieved over the entire visible spectrum, which means that more than half of the surface reflection losses are compensated by the AR structures.  相似文献   

20.
We describe a fabrication method that combines the alignment capabilities of optical lithography with the sub-lithographic dimensions achievable using self-assembled diblock copolymer films. We use surface topography to direct the assembly of in-plane cylindrical copolymer domains so as to subdivide larger patterns defined using optical lithography, in the process registering the location of each 20-nm polymer domain to the lithographic pattern. Our approach provides an application for self-assembly in the fabrication of complex microelectronic circuits entailing alignment of multiple patterned layers. We detail the influence of such process parameters as lithographic pattern dimensions and density, copolymer film thickness, and anneal time on the quality of the resulting nanometer-scale-domain registration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号