首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
不同智能优化算法在求解优化问题时通常表现出显著的性能差异.差分进化(DE)算法具备较好的全局搜索能力,但存在收敛慢、效率低的不足,协方差矩阵自适应进化策略(CMA–ES)局部搜索能力强,具备旋转不变性,但容易陷入局部最优,因此, DE和CMA–ES之间具有潜在的协同互补能力.针对上述问题,提出了一种集成协方差矩阵自适应进化策略与差分进化的优化算法(CMADE).在CMADE框架中, DE算法负责全局搜索, CMA–ES算法进行局部搜索.通过周期性解交换机制实现CMA–ES和DE两个算法间协同交互和反馈控制.在解交换时,从DE种群中选择优秀个体,利用CMA–ES算法在优秀个体周围进行局部搜索.同时在DE和CMA–ES的混合种群中,综合考虑解的多样性和最优性,选取一定比例的解作为DE算法的新种群进行全局搜索,实现全局搜索与局部搜索的动态平衡.将CMADE算法与CMA–ES, DE, SaDE, jDE, EPSDE, ACODE和SHADE算法在CEC2014标准测试集上进行比较实验.结果表明, CMADE整体性能显著优于其它比较算法.  相似文献   

2.
针对协方差矩阵自适应进化策略(CMA-ES)在求解某些问题时存在早熟收敛、精度不高等缺点,通过利用云模型良好的不确定性问题处理能力对CMA-ES的步长控制过程进行改进,得到一种基于云推理的改进CMA-ES算法。该算法通过建立步长控制的云推理模型,采用云模型的不确定性推理来实现步长的控制,避免了原算法采用确定的函数映射进行步长伸缩变化而忽视进化过程中不确定性的不足。最后通过测试函数验证了改进算法具有较高的寻优性能。  相似文献   

3.
为提高离散桁架优化问题的计算效率,提出一种改进的离散差分进化算法.基于种群多样性自适应地选择变异策略以平衡探索和收敛能力,根据个体差异度和种群多样性缩减种群规模以减少计算量,在进行结构分析前舍弃较大的实验个体规避无用计算,并引入精英选择技术解决选择阶段目标个体和实验个体数量不等的问题,在此基础上,给出一种将数值之间的距...  相似文献   

4.
针对协方差矩阵自适应进化策略(CMAES)求解高维多模态函数时存在早熟收敛及求解精度不高的缺陷, 提出一种融合量化正交设计(OD/Q)思想的正交CMAES算法。首先利用小种群的CMAES进行快速搜索, 当算法陷入局部极值时, 依据当前最好解的位置动态选取基向量, 接着利用OD/Q构造的试验向量探测包括极值附近区域在内的整个搜索空间, 从而引导算法跳出局部最优。通过对6个高维多模态标准函数进行测试并与其他算法相比较, 其结果表明, 正交CMAES算法具有更好的搜索精度、收敛速度和全局寻优性能。  相似文献   

5.
步行运动是仿人机器人运动控制的关键环节之一.为了实现快速、稳定的步态,在协方差矩阵自适应进化策略(CMA-ES)的基础上,文中提出仿人机器人螺旋模型算法.在步行优化过程中,将优化任务先划分为3个子任务,按照优化目标分别挑选参数加入相应优化组,同时构建CMA-ES优化器.根据不同的学习目标设计每个CMA-ES优化器,在前一优化组优化结果基础上结合新的需求进行螺旋迭代优化,最终达到既定的学习目标,获得最佳参数值.文中算法应用在HfutEngine仿真3D球队中,机器人的相关步态测试数据显示算法效果较佳.  相似文献   

6.
针对视觉传感器标定和机器人运动学求解过程中存在噪声干扰,导致传统的手眼标定算法求解误差较大的问题,提出一种基于协方差矩阵自适应进化策略(CMAES)的机器人手眼标定算法.首先,采用对偶四元数(DQ)对旋转和平移分别建立目标函数和几何约束,简化求解模型;其次,采用惩罚函数法将约束问题转化成无约束优化问题;最后,使用CMAES算法逼近手眼标定旋转和平移方程的全局最优解.搭建机器人、相机实测实验平台,将所提算法与Tsai两步法、非线性优化算法INRIA、DQ算法进行对比.实验结果表明:所提算法在旋转和平移上的求解误差和方差均小于传统算法;与Tsai算法相比,所提算法的旋转精度提升了4.58%,平移精度提升了10.54%.可见在存在噪声干扰的实际手眼标定过程中,所提算法具有更好的求解精度与稳定性.  相似文献   

7.
张成  徐涛  郑连伟 《控制工程》2007,14(6):594-596
用进化策略求解多目标优化问题时,为了提高解在决策变量空间中的搜索能力和保证Pareto前沿的多样性,提出了一种新的基于进化策略的多目标优化算法。运用自适应变异步长的进化策略,使解在决策变量空间中进行全局和局部搜索;并引入非劣解按一定比例进入下一代的方法,使完全被占优的个体有机会参与到下一代的繁殖,保持了解在Pareto前沿的多样性。该算法在保证解在决策空间多样性的同时,也保持了Pareto前沿的多样性。仿真实验表明,该算法具有良好的搜索性能。  相似文献   

8.
频率选择表面是一种二维周期阵列结构,能够有效控制电磁波的传输和反射。为了解决传统设计方法参数选择的盲目性和有效性缺陷,提出一种基于进化模糊神经网络算法的设计方法。该方法具有开放的结构,可以在线自适应并不断进化,克服普通神经网络中模型结构和参数难以设置的缺点,同时系统可以进行模糊规则插入和规则提取等。仿真结果表明,该方法具有更高的准确度,能有效地解决频率选择表面设计工作中的一些相关问题。  相似文献   

9.
模糊产生式规则的各项参数对模糊Petri网(FPN)的建立具有非常重要的意义,寻找一种可以得到合适的FPN参数的方法一直是Petri网研究领域的热点与难点。已有的寻优方法得到的参数还不太令人满意。对传统进化策略做了改进,并采用改进后的进化策略,研究了一种FPN参数优化的新方法。仿真实验的结果表明,改进后的进化策略能提高FPN的参数精度,从而增强了FPN对知识的分析、推理能力。  相似文献   

10.
针对差分进化算法(DE)存在的早熟收敛和搜索停滞的问题,提出了多策略协方差矩阵学习的差分进化算法.通过协方差矩阵建立特征坐标系,通过在特征坐标系中执行变异和交叉操作,来充分利用当前种群的分布信息以及各变量之间的关系,保证种群能朝着全局最优解的方向进化;根据历史进化信息来选择变异策略的方式使得个体能选择当前最合适的变异策...  相似文献   

11.
针对大规模问题求解效率不高、结果不理想等问题,以影响参数多变的风力发电机布局问题为研究对象,设计并实现了超启发式算法策略,底层算子用差分进化(Differential Evolution,DE)算法和适应性协方差策略(Covariance Matrix Adaptation Evolution Strategy,CMA-ES)算法,高层策略用启发式调用策略选择底层算子求解在不同场景、不同风力参数等多种情况下的风力发电机布局情况。实验将权值选择策略与DE算法、CMA-ES算法和随机调度策略进行比较,最终数据表明该策略求解风力发电布局的效果远高于其他三种。  相似文献   

12.
In the last decades, a number of novel meta-heuristics and hybrid algorithms have been proposed to solve a great variety of optimization problems. Among these, constrained optimization problems are considered of particular interest in applications from many different domains. The presence of multiple constraints can make optimization problems particularly hard to solve, thus imposing the use of specific techniques to handle fitness landscapes which generally show complex properties. In this paper, we introduce a modified Covariance Matrix Adaptation Evolution Strategy (CMA-ES) specifically designed for solving constrained optimization problems. The proposed method makes use of the restart mechanism typical of most modern variants of CMA-ES, and handles constraints by means of an adaptive penalty function. This novel CMA-ES scheme presents competitive results on a broad set of benchmark functions and engineering problems, outperforming most state-of-the-art algorithms as for both efficiency and constraint handling.  相似文献   

13.
14.
This paper discusses the application of Modified Non-Dominated Sorting Genetic Algorithm-II (MNSGA-II) to multi-objective Reactive Power Planning (RPP) problem. The three objectives considered are minimization of combined operating and VAR allocation cost, bus voltage profile improvement and voltage stability enhancement. For maintaining good diversity in nondominated solutions, Dynamic Crowding Distance (DCD) procedure is implemented in NSGA-II and it is called as MNSGA-II. The standard IEEE 30-bus test system, practical 69-bus Indian system and IEEE 118-bus system are considered to analyze the performance of MNSGA-II. The results obtained using MNSGA-II are compared with NSGA-II and validated with reference pareto-front generated by conventional weighted sum method using Covariance Matrix Adapted Evolution Strategy (CMA-ES). The performance of NSGA-II and MNSGA-II are compared with respect to best, mean, worst and standard deviation of multi-objective performance measures namely gamma, spread, minimum spacing and Inverted Generational Distance (IGD) in 15 independent runs. The results show the effectiveness of MNSGA-II and confirm its potential to solve the multi-objective RPP problem. A decision-making procedure based on Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used for finding best compromise solution from the set of pareto-solutions obtained through MNSGA-II.  相似文献   

15.
    
This paper proposes a novel covariance matrix adaptation evolution strategy (CMA-ES) variant, named AEALSCE, for single-objective numerical optimization problems in the continuous domain. To avoid premature convergence and strengthen the exploration capacity of the basic CMA-ES, AEALSCE is obtained by integrating the CMA-ES with two strategies that can adjust the evolutionary directions and enrich the population diversity. The first strategy is named the anisotropic eigenvalue adaptation (AEA) technique, which adapts the search scope towards the optimal evolutionary directions. It scales the eigenvalues of the covariance matrix anisotropically based on local fitness landscape detection. The other strategy is named the local search (LS) strategy, which is executed under the eigen coordinate system and can be subdivided into two parts. In the first part, the new candidates of superior solutions are sampled around the best solution to perform local exploration. In the other part, the new candidates of inferior solutions are generated using a modified mean point along the fitness descent direction. The proposed AEALSCE algorithm is compared with other top competitors, including the CEC 2014 champion, L-SHADE, and the promising NBIPOP-aCMA-ES, by benchmarking the CEC 2014 testbed. Moreover, AEALSCE is applied in solving three constrained engineering design problems and parameter estimation of photovoltaic (PV) models. According to the statistical results of the experiments, our proposed AEALSCE is competitive with other algorithms in convergence efficiency and accuracy. AEALSCE benefits from a good balance of exploration and exploitation, and it exhibits a potential to address real-world optimization problems.  相似文献   

16.
设立禁区的多粒子群优化算法   总被引:1,自引:0,他引:1  
提出一种设立禁区的多粒子群优化(FZPSO)方法。FZPSO模仿某些鸟群的搜索方法,即用多数的鸟群搜索大部分空间,而用少数的鸟群搜索特定小空间,用来追逐当前全局最优解以加快算法收敛。以禁区的概念来改善粒子群容易陷入局部最优的弱点。禁区的大小由禁区半径决定,将每个局部最优解为中心,半径以内的区域划为禁区。实验结果表明FZPSO具有较强的全局收敛能力。  相似文献   

17.
Natural resource allocation is a complex problem that entails difficulties related to the nature of real world problems and to the constraints related to the socio-economical aspects of the problem. In more detail, as the resource becomes scarce relations of trust or communication channels that may exist between the users of a resource become unreliable and should be ignored. In this sense, it is argued that in multi-agent natural resource allocation settings agents are not considered to observe or communicate with each other. The aim of this paper is to study multi-agent learning within this constrained framework. Two novel learning methods are introduced that operate in conjunction with any decentralized multi-agent learning algorithm to provide efficient resource allocations. The proposed methods were applied on a multi-agent simulation model that replicates a natural resource allocation procedure, and extensive experiments were conducted using popular decentralized multi-agent learning algorithms. Experimental results employed statistical figures of merit for assessing the performance of the algorithms with respect to the preservation of the resource and to the utilities of the users. It was revealed that the proposed learning methods improved the performance of all policies under study and provided allocation schemes that both preserved the resource and ensured the survival of the agents, simultaneously. It is thus demonstrated that the proposed learning methods are a substantial improvement, when compared to the direct application of typical learning algorithms to natural resource sharing, and are a viable means of achieving efficient resource allocations.  相似文献   

18.
针对数值优化问题,对差异演化算法进行改进,获得多子差异演化算法。将多子差异演化算法和基于自适应搜索子空间的郭涛算法融合到文化算法的框架中,提出一种新的文化算法。实验结果表明,与多子差异演化算法、差异演化算法和基于自适应搜索子空间的郭涛算法相比,该算法收敛速度快,不易陷入局部最优,所得解的质量更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号