首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
不同智能优化算法在求解优化问题时通常表现出显著的性能差异.差分进化(DE)算法具备较好的全局搜索能力,但存在收敛慢、效率低的不足,协方差矩阵自适应进化策略(CMA–ES)局部搜索能力强,具备旋转不变性,但容易陷入局部最优,因此, DE和CMA–ES之间具有潜在的协同互补能力.针对上述问题,提出了一种集成协方差矩阵自适应进化策略与差分进化的优化算法(CMADE).在CMADE框架中, DE算法负责全局搜索, CMA–ES算法进行局部搜索.通过周期性解交换机制实现CMA–ES和DE两个算法间协同交互和反馈控制.在解交换时,从DE种群中选择优秀个体,利用CMA–ES算法在优秀个体周围进行局部搜索.同时在DE和CMA–ES的混合种群中,综合考虑解的多样性和最优性,选取一定比例的解作为DE算法的新种群进行全局搜索,实现全局搜索与局部搜索的动态平衡.将CMADE算法与CMA–ES, DE, SaDE, jDE, EPSDE, ACODE和SHADE算法在CEC2014标准测试集上进行比较实验.结果表明, CMADE整体性能显著优于其它比较算法.  相似文献   

2.
针对协方差矩阵自适应进化策略(CMA-ES)在求解某些问题时存在早熟收敛、精度不高等缺点,通过利用云模型良好的不确定性问题处理能力对CMA-ES的步长控制过程进行改进,得到一种基于云推理的改进CMA-ES算法。该算法通过建立步长控制的云推理模型,采用云模型的不确定性推理来实现步长的控制,避免了原算法采用确定的函数映射进行步长伸缩变化而忽视进化过程中不确定性的不足。最后通过测试函数验证了改进算法具有较高的寻优性能。  相似文献   

3.
为提高离散桁架优化问题的计算效率,提出一种改进的离散差分进化算法.基于种群多样性自适应地选择变异策略以平衡探索和收敛能力,根据个体差异度和种群多样性缩减种群规模以减少计算量,在进行结构分析前舍弃较大的实验个体规避无用计算,并引入精英选择技术解决选择阶段目标个体和实验个体数量不等的问题,在此基础上,给出一种将数值之间的距...  相似文献   

4.
针对协方差矩阵自适应进化策略(CMAES)求解高维多模态函数时存在早熟收敛及求解精度不高的缺陷, 提出一种融合量化正交设计(OD/Q)思想的正交CMAES算法。首先利用小种群的CMAES进行快速搜索, 当算法陷入局部极值时, 依据当前最好解的位置动态选取基向量, 接着利用OD/Q构造的试验向量探测包括极值附近区域在内的整个搜索空间, 从而引导算法跳出局部最优。通过对6个高维多模态标准函数进行测试并与其他算法相比较, 其结果表明, 正交CMAES算法具有更好的搜索精度、收敛速度和全局寻优性能。  相似文献   

5.
步行运动是仿人机器人运动控制的关键环节之一.为了实现快速、稳定的步态,在协方差矩阵自适应进化策略(CMA-ES)的基础上,文中提出仿人机器人螺旋模型算法.在步行优化过程中,将优化任务先划分为3个子任务,按照优化目标分别挑选参数加入相应优化组,同时构建CMA-ES优化器.根据不同的学习目标设计每个CMA-ES优化器,在前一优化组优化结果基础上结合新的需求进行螺旋迭代优化,最终达到既定的学习目标,获得最佳参数值.文中算法应用在HfutEngine仿真3D球队中,机器人的相关步态测试数据显示算法效果较佳.  相似文献   

6.
针对视觉传感器标定和机器人运动学求解过程中存在噪声干扰,导致传统的手眼标定算法求解误差较大的问题,提出一种基于协方差矩阵自适应进化策略(CMAES)的机器人手眼标定算法。首先,采用对偶四元数(DQ)对旋转和平移分别建立目标函数和几何约束,简化求解模型;其次,采用惩罚函数法将约束问题转化成无约束优化问题;最后,使用CMAES算法逼近手眼标定旋转和平移方程的全局最优解。搭建机器人、相机实测实验平台,将所提算法与Tsai两步法、非线性优化算法INRIA、DQ算法进行对比。实验结果表明:所提算法在旋转和平移上的求解误差和方差均小于传统算法;与Tsai算法相比,所提算法的旋转精度提升了4.58%,平移精度提升了10.54%。可见在存在噪声干扰的实际手眼标定过程中,所提算法具有更好的求解精度与稳定性。  相似文献   

7.
张成  徐涛  郑连伟 《控制工程》2007,14(6):594-596
用进化策略求解多目标优化问题时,为了提高解在决策变量空间中的搜索能力和保证Pareto前沿的多样性,提出了一种新的基于进化策略的多目标优化算法。运用自适应变异步长的进化策略,使解在决策变量空间中进行全局和局部搜索;并引入非劣解按一定比例进入下一代的方法,使完全被占优的个体有机会参与到下一代的繁殖,保持了解在Pareto前沿的多样性。该算法在保证解在决策空间多样性的同时,也保持了Pareto前沿的多样性。仿真实验表明,该算法具有良好的搜索性能。  相似文献   

8.
频率选择表面是一种二维周期阵列结构,能够有效控制电磁波的传输和反射。为了解决传统设计方法参数选择的盲目性和有效性缺陷,提出一种基于进化模糊神经网络算法的设计方法。该方法具有开放的结构,可以在线自适应并不断进化,克服普通神经网络中模型结构和参数难以设置的缺点,同时系统可以进行模糊规则插入和规则提取等。仿真结果表明,该方法具有更高的准确度,能有效地解决频率选择表面设计工作中的一些相关问题。  相似文献   

9.
模糊产生式规则的各项参数对模糊Petri网(FPN)的建立具有非常重要的意义,寻找一种可以得到合适的FPN参数的方法一直是Petri网研究领域的热点与难点。已有的寻优方法得到的参数还不太令人满意。对传统进化策略做了改进,并采用改进后的进化策略,研究了一种FPN参数优化的新方法。仿真实验的结果表明,改进后的进化策略能提高FPN的参数精度,从而增强了FPN对知识的分析、推理能力。  相似文献   

10.
针对差分进化算法(DE)存在的早熟收敛和搜索停滞的问题,提出了多策略协方差矩阵学习的差分进化算法.通过协方差矩阵建立特征坐标系,通过在特征坐标系中执行变异和交叉操作,来充分利用当前种群的分布信息以及各变量之间的关系,保证种群能朝着全局最优解的方向进化;根据历史进化信息来选择变异策略的方式使得个体能选择当前最合适的变异策...  相似文献   

11.
In the last decades, a number of novel meta-heuristics and hybrid algorithms have been proposed to solve a great variety of optimization problems. Among these, constrained optimization problems are considered of particular interest in applications from many different domains. The presence of multiple constraints can make optimization problems particularly hard to solve, thus imposing the use of specific techniques to handle fitness landscapes which generally show complex properties. In this paper, we introduce a modified Covariance Matrix Adaptation Evolution Strategy (CMA-ES) specifically designed for solving constrained optimization problems. The proposed method makes use of the restart mechanism typical of most modern variants of CMA-ES, and handles constraints by means of an adaptive penalty function. This novel CMA-ES scheme presents competitive results on a broad set of benchmark functions and engineering problems, outperforming most state-of-the-art algorithms as for both efficiency and constraint handling.  相似文献   

12.
针对大规模问题求解效率不高、结果不理想等问题,以影响参数多变的风力发电机布局问题为研究对象,设计并实现了超启发式算法策略,底层算子用差分进化(Differential Evolution,DE)算法和适应性协方差策略(Covariance Matrix Adaptation Evolution Strategy,CMA-ES)算法,高层策略用启发式调用策略选择底层算子求解在不同场景、不同风力参数等多种情况下的风力发电机布局情况。实验将权值选择策略与DE算法、CMA-ES算法和随机调度策略进行比较,最终数据表明该策略求解风力发电布局的效果远高于其他三种。  相似文献   

13.
提出一种改进的差分进化算法用于求解约束优化问题.该算法在处理约束时不引入惩罚因子,使约束处理问题简单化.利用佳点集方法初始化个体以维持种群的多样性.结合差分进化算法两种不同变异策略的特点,对可行个体与不可行个体分别采用DE/best/1变异策略和DE/rand/1策略,以提高算法的全局收敛性能和收敛速率.用几个标准的Benchmark问题进行了测试,实验结果表明该算法是一种求解约束优化问题的有效方法.  相似文献   

14.
The reliability-based design optimization (RBDO) presents to be a systematic and powerful approach for process designs under uncertainties. The traditional double-loop methods for solving RBDO problems can be computationally inefficient because the inner reliability analysis loop has to be iteratively performed for each probabilistic constraint. To solve RBDOs in an alternative and more effective way, Deb et al. [1] proposed recently the use of evolutionary algorithms with an incorporated fastPMA. Since the imbedded fastPMA needs the gradient calculations and the initial guesses of the most probable points (MPPs), their proposed algorithm would encounter difficulties in dealing with non-differentiable constraints and the effectiveness could be degraded significantly as the initial guesses are far from the true MPPs. In this paper, a novel population-based evolutionary algorithm, named cell evolution method, is proposed to improve the computational efficiency and effectiveness of solving the RBDO problems. By using the proposed cell evolution method, a family of test cells is generated based on the target reliability index and with these reliability test cells the determination of the MPPs for probabilistic constraints becomes a simple parallel calculation task, without the needs of gradient calculations and any initial guesses. Having determined the MPPs, a modified real-coded genetic algorithm is applied to evolve these cells into a final one that satisfies all the constraints and has the best objective function value for the RBDO. Especially, the nucleus of the final cell contains the reliable solution to the RBDO problem. Illustrative examples are provided to demonstrate the effectiveness and applicability of the proposed cell evolution method in solving RBDOs. Simulation results reveal that the proposed cell evolution method outperforms comparative methods in both the computational efficiency and solution accuracy, especially for multi-modal RBDO problems.  相似文献   

15.
袁亦川  杨洲  罗廷兴  秦进 《计算机应用》2018,38(5):1254-1260
针对动态优化问题(DOP)的求解,提出结合多种群方法和竞争策略的差分进化算法(DECS)。首先,将一个种群作为侦测种群,通过监测种群中所有个体的评价值和种群维度来判断环境是否发生变化。其次,将余下多个种群作为搜索种群,独立搜索环境中的最优值。在搜索过程中,引入排除规则,避免多个搜索种群聚集在同一个局部最优的邻域。在迭代若干代后对各搜索种群执行竞争操作,保留评估值最优个体所在的种群并对该种群的下一代个体生成采用量子个体生成机制,而对其他搜索种群重新初始化。最后,利用7个测试函数的49个动态变化问题对DECS进行验证,并将实验结果与人工免疫算法(Dopt-aiNet)、复位粒子群优化(rPSO)算法、改进差分进化(MDE)算法进行比较。实验结果表明,在49个问题上,DECS有34个问题的平均离线误差期望小于Dopt-aiNet算法,所有问题的平均离线误差期望都小于rPSO算法和MDE算法,因此DECS对DOP求解动态优化问题是可行的。  相似文献   

16.
This paper discusses the application of Modified Non-Dominated Sorting Genetic Algorithm-II (MNSGA-II) to multi-objective Reactive Power Planning (RPP) problem. The three objectives considered are minimization of combined operating and VAR allocation cost, bus voltage profile improvement and voltage stability enhancement. For maintaining good diversity in nondominated solutions, Dynamic Crowding Distance (DCD) procedure is implemented in NSGA-II and it is called as MNSGA-II. The standard IEEE 30-bus test system, practical 69-bus Indian system and IEEE 118-bus system are considered to analyze the performance of MNSGA-II. The results obtained using MNSGA-II are compared with NSGA-II and validated with reference pareto-front generated by conventional weighted sum method using Covariance Matrix Adapted Evolution Strategy (CMA-ES). The performance of NSGA-II and MNSGA-II are compared with respect to best, mean, worst and standard deviation of multi-objective performance measures namely gamma, spread, minimum spacing and Inverted Generational Distance (IGD) in 15 independent runs. The results show the effectiveness of MNSGA-II and confirm its potential to solve the multi-objective RPP problem. A decision-making procedure based on Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used for finding best compromise solution from the set of pareto-solutions obtained through MNSGA-II.  相似文献   

17.
李康顺  左磊  李伟 《计算机应用》2016,36(1):143-149
为了克服传统差分演化(DE)算法在求解约束优化问题时出现的收敛性慢和容易陷入早熟等缺陷,提出一种新的基于单形正交实验设计的差分演化(SO-DE)算法。该算法设计了一种结合单形交叉和正交实验设计的混合交叉算子来提高差分演化算法的搜索能力;同时采用了一种改进的个体优劣比较准则对种群个体进行比较和选择。这种新的混合交叉算子利用多个父代个体进行单形交叉产生多个子代个体,从两者中选择优秀个体进行正交实验设计得到下一代种群个体。改进的个体优劣比较准则对不同状态下的种群采用不同的处理方案,其目的在于能够有效地权衡目标函数值和约束违反量之间的关系,从而选择优秀个体进入下一代种群。通过对13个标准测试函数和2个工程设计问题进行仿真实验,实验结果表明SO-DE算法求解的精度和标准方差都要优于HEAA算法和COEA/OED算法。SO-DE算法具有更高的精度以及更好的稳定性。  相似文献   

18.
Engineering problems presenting themselves in a multiobjective setting have become commonplace in most industries. In such situations the decision maker (DM) requires several solution options prior to selecting the best or the most attractive solution with respect to the current industrial circumstances. The weighted sum scalarization approach was employed in this work in conjunction with three metaheuristic algorithms: particle swarm optimization (PSO), differential evolution (DE) and the improved DE algorithm (GTDE) (which was enhanced using ideas from evolutionary game theory). These methods are then used to generate the approximate Pareto frontier to the nano-CMOS voltage-controlled oscillator (VCO) design problem. Some comparative studies were then carried out to compare the proposed method as compared to the standard DE approach. Examination on the quality of the solutions across the Pareto frontier obtained using these algorithms was carried out using the hypervolume indicator (HVI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号