共查询到17条相似文献,搜索用时 78 毫秒
1.
基于混合量子进化计算的混沌系统参数估计 总被引:1,自引:0,他引:1
混沌系统参数估计本质上是一多维参数优化问题.为精确估计混沌系统的未知参数,本文提出一种混合量子进化算法(HQEA)用于求解该优化问题,该方法采用实数量子角形式表示染色体,用量子比特的概率作为个体的当前位置信息;提出由差分进化计算更新量子位置状态的量子差分进化算法(QDE),并将其与实数编码量子进化算法(RQEA)相融合,以便令算法在解空间的全局探索和局部开发能力之间取得平衡.算法还引入量子非门算子,对当前最佳个体中按某个概率选中的量子比特位,进行变换操作,以便增强算法跳出局部最优解的能力.基准函数测试表明混合算法的全局搜索能力及可靠性都有很大改善.通过Lorenz混沌系统进行数值仿真,结果表明了该混合算法的有效性. 相似文献
2.
3.
改进实数编码量子进化算法及其在参数估计中的应用 总被引:1,自引:0,他引:1
借鉴量子计算的相关概念和原理,提出一种改进实数编码量子进化算法(IRCQEA).算法的核心是依据染色体的具体形式和目标函数的梯度信息设计互补变异进化染色体,以实现局部搜索和全局搜索的平衡;根据算法的进化过程动态缩小搜索空间,以加快收敛速度.对标准数值优化问题的求解结果表明,该算法具有寻优能力强、搜索精度高和稳定性好等优点.以非线性系统参数估计问题为例进行的仿真实验表明,所提出的算法能够有效提高估计参数的精度. 相似文献
4.
量子进化算法研究现状综述 总被引:7,自引:0,他引:7
在介绍基本量子进化算法(QEA)的基础上,重点归纳总结了最近几年量子进化算法在算法机理和性能方面以及在算法的种群改进、编码扩展、算子创新、算法融合等应用方面的研究成果,进而提出了量子进化算法在模式理论、多目标进化、算法研究、应用等方面进一步的研究内容. 相似文献
5.
提出了基于混沌理论的免疫量子进化算法,该算法应用混沌理论并依据小生境机制将初始个体划分为实数编码染色体的子群,各子群应用免疫特性的局域搜索能力找出优化解。混沌优化搜索机制能有效避免早熟收敛。为解决2进制算法所不能避免的精度与效率的冲突,采用10进制编码染色体。算法综合了量子计算的天然并行性、免疫算法的充分自适应性和混沌系统的遍历性,它比传统的进化算法具有更好的种群多样性,更快的收敛速度,更有效的全局和局域寻优能力。仿真实验也表明了该算法的优越性。 相似文献
6.
如今Web服务在网络中被广泛应用,但随着需求变更、系统升级等变化的出现,Web服务如何进行相应的发展演化就成为了一个很重要的问题。为此,文中提出量子免疫进化算法的Web服务演化框架,该策略采用量子编码和量子进化操作优化服务选择,从而为服务演化的自动管理、控制提供了良好的知识基础,提高了整体Web服务的质量。为验证方法的有效性,进行了仿真实验分析,与在组合服务中常用的HTN规划方法进行了比较,实验结果表明文中所提方法在整体服务的可用性上更为优秀。 相似文献
7.
8.
基于免疫量子进化算法的负载均衡策略 总被引:1,自引:0,他引:1
在集群系统任务调度和分配中,提出一种基于免疫量子进化算法的负载均衡策略。该策略采用量子化编码和量子进化操作优化任务分配,在量子陷入局部极值下,引入免疫操作进行接种疫苗和免疫选择,从而增加种群多样性。仿真结果表明,与SGALB策略相比,该策略具有更高的搜索效率,其集群系统的整体性能更优。 相似文献
9.
10.
基于多种群的自适应免疫进化计算 总被引:3,自引:0,他引:3
将免疫思想同思维进化计算相结合,提出一种新的基于多种群的自适应免疫进化算法(IABM),算法定义了选择、记忆、克隆、超变异、抑制5种基本算子.试验结果表明该算法具有高效的收敛速度,并能收敛到全局最优点.与多种群遗传算法和思维进化计算相比,IABM收敛速度更快,收敛率更高. 相似文献
11.
12.
13.
为了提高量子进化算法的全局收敛性能, 基于协同进化的思想, 并结合扩展紧致遗传算法, 提出了协同进化扩展紧致量子进化算法(CECQEA). 该算法利用多粒度机制进行量子染色体的旋转, 并依据边缘积模块(MPM) 进行交叉和变异以避免优良模式的破坏; 在每一个子种群内对个体依据MPM进行自调整操作, 同时进行种群的分裂、合并及优良个体的迁移操作. 通过对算法收敛性的分析可看出, CECQEA 能够收敛到满意解集; 经基准函数以及背包问题的仿真测试分析可看出, 算法收敛效果更加明显. 相似文献
14.
邓长春 《计算机工程与应用》2010,46(23):103-105
网络中存在许多设计和优化问题,其中相当一部分属于NP类型。传统的解法由于计算复杂度过大而失效。为了降低计算机网络的时延和运营费用以改进网络性能,采用量子进化算法优化计算机网络中路由选择问题,深入研究了量子进化算法及其在路由选择优化问题中的应用,并对量子进化算法进行了改进,使之更适合这类问题的求解。仿真实验结果表明,同传统优化算法相比该方法对求解网络的路由选择具有很大优越性。研究结果不仅对各类网络的优化问题有一定的应用价值,而且也扩展了量子进化算法的应用范围。 相似文献
15.
基于相位编码的混沌量子免疫算法 总被引:2,自引:0,他引:2
目前量子群智能优化算法的个体均采用基于量子比特测量的二进制编码方式,在用于连续问题优化时,由于频繁的解码运算,严重降低了优化效率.针对这一问题,本文提出一种混沌量子免疫算法.该方法直接采用量子比特的相位对抗体进行编码;用量子旋转门实现优良抗体的克隆扩增,通过在量子旋转门中引入混沌变量动态改变转角大小实现局部搜索;用基于Pauli-Z门的较差抗体的变异,实现全局优化.证明了算法的收敛性.由于优化过程统一在空间[0,2π]n进行,而与具体问题无关,因此,对不同尺度空间的优化问题具有良好的适应性.实验结果表明该算法能有效改善普通免疫算法的搜索能力和优化效率. 相似文献
16.
提出了一种基于免疫进化算法的并联机器人位姿估计算法。建立了视觉检测坐标系和位姿参数估计模型;借鉴生物免疫系统中克隆变异和免疫记忆机理,通过免疫进化获得位姿参数的可行解。实验表明,相较于传统迭代算法,基于免疫进化算法的位姿检测算法收敛快,精确度高,对噪声不敏感,具有较好的鲁棒性。 相似文献
17.
针对连续空间数值优化问题,提出了一种竞争型量子进化算法。粒子每次向全局最优和种群均值两个方向分别进化,从而得到两个子粒子。根据“优胜劣汰”原则选择适应度较高者作为下一代。同时,为了保证粒子的多样性,引入了一种自适应变异机制:对适应度较低的粒子以较高概率进行变异,而对适应度较高粒子以较低概率进行扰动。通过5个标准测试函数验证了算法的性能。仿真结果表明,与PAQEA及NVCQEA相比,该算法收敛速度快,收敛精度高,稳定性好。 相似文献