首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corrosion mechanisms at electronic assemblies under climatic stresses During the industrial applications electronic assemblies are exposed to extreme stresses. A high humidity in combination with contaminations can initiate corrosion mechanisms, which cause a failure of the electronic assemblies. Main components of the contaminations are flux residues after soldering proceses. During a moisture condensation of contaminated boards electrolytic mechanisms occur, which lead to a metal dissolution and to a formation of migration bridges between solder joints and conductors. The failure rate is a function of the composition and the concentration of the contaminations. The use of protective coatings cannot prevent the failure of electronic assemblied during moisture condensation, because the coatings are waterpermeable. The adsorption of water leads to the formation of bubbles and delaminations of the coating.  相似文献   

2.
The science and technology of thermal barrier coatings has advanced considerably since reports of the first test on turbine blades in a research engine in 1976. Today thermal barrier coatings are flying in revenue service in a low risk location within the turbine section of certain gas turbine engines. The state-of-the-art coating system for gas turbine applications is currently a plasma-sprayed ZrO2-(6%–8%) Y2O3 ceramic layer over an MCrAlY (M ≡ Ni, Co or NiCo) bond coat layer plasma sprayed at low pressure.Although the potential for meeting current and short-term goals is high, longer-range goals may not be attainable with current coating concepts. These longer-range goals will involve high risk designs where coating loss could lead directly to component loss. Several steps must be taken to help meet these goals. Improved understanding of coating failure mechanisms is required. Models are needed to predict lifetimes. Process automation and quality control procedures must be instituted. Finally, new concepts in plasma-sprayed coatings must be developed and alternatives to the plasma- spraying process may be required.The current status of thermal barrier coatings and prospects for future progress in the above areas are summarized.  相似文献   

3.
热障涂层的研究动态及应用   总被引:16,自引:0,他引:16  
对有关热障涂层系统的组成及材料性能进行了综述,讨论了陶瓷层和结合底层目前的不同制造方式,以及热障涂层的失效机理,介绍了热障涂层系统在燃气轮机和柴油机中的改进设计及其应用。  相似文献   

4.
High temperature materials require both, high oxidation resistance and mechanical strength. Owing to their excellent high temperature strength, Ni-based superalloys are extensively used in turbine engines. In order to enhance the oxidation resistance and thereby extend the lifetime, their surface has to be modified by the enrichment of stable oxide formers. Mainly NiAl-diffusion coatings are used to protect turbine components, serving as an Al-reservoir for the formation of a thin, protective scale. Besides their oxidation resistance, the mechanical behavior of such coatings is crucial for the integrity of the system. Under service conditions, compositional changes will occur due to two mechanisms: outward-diffusion of Al to form the oxide and interdiffusion with the substrate. Such chemical changes lead to a change in the mechanical behavior of the coating and thus the coated system. In this study, the compositional and microstructural changes, which occur during the thermocyclic exposure, are correlated with the mechanical properties of NiAl diffusion coatings. Prior to and after thermocyclic exposure at 900, 1050 and 1100 °C for durations up to 1000h four-point bending flexural tests with in-situ acoustic emission measurement are used to determine the fracture strain of the coating. The fracture strain increases due to Al-depletion during cyclic exposure and can be correlated with the Al-concentration in the diffusion zone. Moreover, elastic modulus and hardness of the coating zones are determined by nanoindentation. Both show a decrease in the single-phase sub-stoichiometric β-NiAl with lower Al-content, increasing again within the two-phase stability region.  相似文献   

5.
Today, intricate problems of surface treatment can be solved through precision cladding using advanced laser technology. Metallic and carbide coatings have been produced with high-power lasers for years, and current investigations show that laser cladding is also a promising technique for the production of dense and precisely localized ceramic layers. In the present work, powders based on Al2O3 and ZrO2 were used to clad aluminum and titanium light alloys. The compact layers are up to 1 mm thick and show a nonporous cast structure as well as a homogeneous network of vertical cracks. The high adhesive strength is due to several chemical and mechanical bonding mechanisms and can exceed that of plasmasprayed coatings. Compared to thermal spray techniques, the material deposition is strictly focused onto small functional areas of the workpiece. Thus, being a precision technique, laser cladding is not recommended for large-area coatings. Examples of applications are turbine components and filigree parts of pump casings.  相似文献   

6.
杜晋  张剑峰  张超  游文明 《表面技术》2016,45(10):154-161
空蚀和沙浆冲蚀是对包括水轮机在内的水力机械过流元件产生破坏,进而降低其服役寿命的两种主要破坏形式。采用特定的工艺在水轮机过流元件基体材料表面沉积涂层,以提高元件的抗蚀性能受到越来越多的关注。综述了水轮机常用金属材料和近年来国内外研究人员对水轮机材料及其涂层空蚀和冲蚀失效机理的研究进展,针对国内外文献报道中采用的超音速火焰喷涂、激光熔覆、物理气相沉积和化学气相沉积等工艺制备的涂层的抗空蚀和沙浆冲蚀性能进行了重点论述。依据材料性质对文献中出现的表面强化材料进行分类,即合金材料、陶瓷材料、复合材料、金属玻璃材料和类金刚石材料五类,结合涂层制备工艺对各类涂层失效机理进行剖析。通过案例重点讨论了涂层的微观缺陷,如孔隙、裂纹、未熔颗粒,涂层的硬度,涂层与基材的结合强度,涂层的厚度等因素对抗蚀性能的影响。最后对其研究和应用现状,从工艺方法和材料两方面提出了展望,指出运用先进涂层技术和新型涂层材料制备高效涂层,是解决复杂多相流条件下空蚀和冲蚀联合问题的有效途径。  相似文献   

7.
模拟高温下的实际工况并研究高温下热障涂层的失效机理对热障涂层的研究具有积极意义。在自主研制的热循环试验机中引进声发射技术,对涂层高温性能进行了研究和试验,初步对声发射信号特征与涂层寿命之间的关系进行了探索性研究,实现了对裂纹的实时、动态监测,而且能够得到与理论上疲劳裂纹扩展速率曲线相似的结果。通过大量数据分析,证明利用声发射技术研究热障涂层失效机理是可行的。  相似文献   

8.
Recently, absorption of vibration energy by mechanical damping has attracted much attention in several fields such as vibration reduction in aircraft and automotive industries, nanoscale vibration isolations in high-precision electronics, building protection in civil engineering, etc. Typically, the most used high-damping materials are based on polymers due to their viscoelastic behavior. However, polymeric materials usually show a low elastic modulus and are not stable at relatively low temperatures (≈323 K). Therefore, alternative materials for damping applications are needed. In particular, shape memory alloys (SMAs), which intrinsically present high-damping capacity thanks to the dissipative hysteretic movement of interfaces under external stresses, are very good candidates for high-damping applications. A completely new approach was applied to produce high-damping composites with relatively high stiffness. Cu-Al-Ni shape memory alloy powders were embedded with metallic matrices of pure In, a In-10wt.%Sn alloy and In-Sn eutectic alloy. The production methodology is described. The composite microstructures and damping properties were characterized. A good particle distribution of the Cu-Al-Ni particles in the matrices was observed. The composites exhibit very high damping capacities in relatively wide temperature ranges. The methodology introduced provides versatility to control the temperature of maximum damping by adjusting the shape memory alloy composition.  相似文献   

9.
This article addresses the challenges for maximizing the benefit of thermal barrier coatings for turbine engine applications. The perspective is from the viewpoint of a customer, a turbine airfoil designer who is continuously challenged to increase the turbine inlet temperature capability for new products while maintaining cooling flow levels or even reducing them. This is a fundamental requirement for achieving increased engine thrust levels. Developing advanced material systems for the turbine flowpath airfoils, such as high-temperature nickel-base superalloys or thermal barrier coatings to insulate the metal airfoils from the hot flowpath environment, is one approach to solve this challenge. The second approach is to increase the cooling performance of the turbine airfoil, which enables increased flowpath temperatures and reduced cooling flow levels. Thermal barrier coatings have been employed in jet engine applications for almost 30 years. The initial application was on augmentor liners to provide thermal protection during afterburner operation. However, the production use of thermal barrier coatings in the turbine section has only occurred in the past 15 years. The application was limited to stationary parts and only recently incorporated on the rotating turbine blades. This lack of endorsement of thermal barrier coatings resulted from the poor initial duratbility of these coatings in high heat flux environments. Significant improvements have been made to enhance spallation resistance and erosion resistance, which has resulted in increased reliability of these coatings in turbine applications.  相似文献   

10.
阻尼合金不仅拥有将机械振动能转化为热能并耗散掉的物理特性,而且具有较好的力学性能.如果将阻尼合金制造成零件应用到装备中将能有效控制设备运行时产生的振动和噪声,因此具有重要的工程价值.概述了复相型、位错型、孪晶型、铁磁型和Fe-Mn基阻尼合金的阻尼机制,归纳了影响上述合金阻尼性能的因素以及提高合金阻尼性能的途径.同时,对...  相似文献   

11.
Passive means of vibration attenuation have been employed successfully and efficiently in machining systems such as turning and milling. Traditional approach to controlling vibration in a milling system is to develop control mechanisms for cutting tools or machine spindles. However, due to the nature of milling operations where the cutting tools rotate at high speed, the passive vibration control methods find very limited application with the traditional approach. In order to utilise the potential of the passive vibration control methodology in milling applications, the milling operation should be viewed as a system comprising an elastic structure and operation parameters. Dynamics of this closed-loop system should improve with improvement in dynamics of any of the system components, especially within the elastic structure that comprises the cutting tool, the machine tool, the workholding system and the workpiece. Although the level of improvement will vary depending on which component of the elastic chain is targeted for this purpose. This paper presents the development and testing of tuned viscoelastic dampers (TVDs) for vibration control through their application on a workpiece in milling operations. This work targets workpiece held on a palletised workholding system for the control of unwanted vibration and thus deviates from the traditional approach where cutting tool and/or machine spindles are targeted for vibration control strategies. Palletised workholding systems, due to their compact design, offer an opportunity to design passive damping mechanisms that are easier to implement in the case of a milling system. The TVD developed through this research is based on a commercially available viscoelastic damping polymer. Advantage of such materials is their high damping performance over a wide range of excitation frequencies. The TVD design process has used a unique combination of analytical modelling with experimental FRF data. Modal impact testing showed that the application of the TVD reduced the amplitude of vibration acceleration by 20 dB for the target mode. Since the target mode corresponded to torsional vibration, the TVD was effective in two planar coordinates, i.e. X and Y. In addition, the TVD also significantly reduced the amplitude of a vibration mode far from the mode it was designed for. The system has been tested experimentally to demonstrate significant reduction in vibration amplitudes during a milling process. The milling tests with different combinations of cutting parameters show that multi-TVD approach is always valid regardless of the parameters being used. The only requirement for TVDs to function effectively is that the natural frequency of the system, for which the TVDs are designed, is excited during the milling process.  相似文献   

12.
The mechanical behavior of fiber-reinforced composites is largely determined by adhesion at the fiber-matrix interface. Thus, a fundamental understanding of the interfacial region and a quantitative characterization of the level of interfacial adhesion can contribute to an evaluation of the mechanical behavior and performance of composite materials. Among numerous techniques for interface characterization, the vibration damping method has attracted continually more attention because it provides sensitive and nondestructive detection of the interfacial region in composites. In the research presented here, a new optical system for measuring vibration damping was introduced, and a model for evaluating the interfacial adhesion between fiber and matrix from a damping parameter was developed. A quantitative relationship between the dynamic (vibration damping) and static (interfacial shear strength) adhesion measurements was established. The experimental data from glass-fiber-reinforced epoxy resin composites with different interfacial treatments showed good agreement with the theoretical model.  相似文献   

13.
The present study evaluates the role of the microstructure in the static and dynamic mechanical behavior of as-cast Al7075 alloy promoted by ultrasonic treatment (US) during solidification. The characterization of samples revealed that US treatment promoted grain and intermetallics refinement, changed the shape of the intermetallic phases (equilibrium phases of soluble M and/or T (Al, Cu, Mg, Zn) and their insoluble Al-Cu-Fe compounds) and lead to their uniform distribution along the grain boundaries. Consequently, the mechanical properties and damping capacity above critical strain values were enhanced by comparison with values obtained for castings produced without US vibration. This results suggest that the grain and secondary phases refinement by US can be a promising solution to process materials to obtain high damping and high strength characteristics.  相似文献   

14.
Thermal barrier coatings (TBCs) are improving the performance and efficiency of advanced gas turbine engines by allowing higher inlet temperature and insulation of critical hot-section components. Monitoring the integrity of TBCs prior to failure is critical to the overall performance of gas turbine en gines and requires a robust nondestructive evaluation (NDE) technique. In this paper, changes in electrochemical impedance with microstructural degradation of critical constituents in TBCs are summarized for the development of electrochemical impedance spectroscopy as an NDE technique for TBCs.  相似文献   

15.
选用直径为55mm的水平连铸灰铁HT250棒材,利用动态热机械分析仪测试型材的阻尼性能随振幅、频率和温度的变化关系,探讨灰铸铁型材的阻尼机制。研究表明,灰铸铁型材的阻尼性能随振幅和频率的提高而增加。在40℃附近出现斯诺克温度内耗峰。斯诺克峰的出现,使型材的阻尼性能随温度的变化在高低温时表现出完全不同的趋势。存在一临界应变振幅范围,大应变振幅下的阻尼性能远高于小应变振幅下的阻尼性能。灰铸铁型材的阻尼温度效应主要来源于点缺陷阻尼。位错阻尼在阻尼频率效应和阻尼振幅效应中起了主导作用,决定了型材的阻尼-频率行为和阻尼振幅行为。  相似文献   

16.
Advanced high-energy plasma systems are being used to achieve the benefits of the high-velocity oxy-fuel (HVOF) system without losing the inherent advantages of plasma for coating of gas turbine parts. MCrAlY coatings play a very important role in the performance and reliability of gas turbine components. One of the important considerations for next generation of gas turbines, which have more demanding conditions and need to withstand ever increasing operating temperatures, is that they should possess very low oxygen content levels in the coating. Low oxygen content coatings are applied by the expensive low-pressure plasma spray (LPPS)/vacuum plasma spray (VPS) technique for critical components in aero- and land-based gas turbines. This work deals with the development of low-cost LPPS equivalent coatings (having low oxygen content) using the high-energy high-velocity plasma spray (HEHVPS) gun and inert gas shroud. A comparison has also been made with CoNiCrAlY coatings by HVOF.  相似文献   

17.
金属阻尼材料是一种用来减振和降噪的结构功能一体化材料,利用其制造相关振动源构件,可以有效地解决机械制造及相关工程领域中的振动和噪声问题。介绍了近年发展起来的新型MnCu可变形M2052(Mn-20Cu-5Ni-2Fe)合金的阻尼机理、研究开发过程以及应用前景,并提出该合金的一些研究方向。  相似文献   

18.
A CVD pilot plant, designed and built in INTA, is presently being used to deposit aluminium coatings with applications in the fields of industrial and aeronautic turbines, as well as on the protection of components employed in the chemical industry, waste incinerators, fuel cells, and for the replacement of Cd coatings in aeronautic components. The industrial process currently used to coat aeronautic and industrial turbine components employs AlCl3 as precursor at 700–1100 °C and requires more than 12 h per batch (including loading, heating, coating and cooling) due to the relatively low deposition rates and the long heating and cooling cycles. The new process carried out at INTA employs an organometallic precursor, which results in higher deposition rates, at 280–350 °C with a total processing time lower than 5 h per batch. As in any other CVD process, this one allows deposition of coatings in complex geometry components such as on the inner surfaces of turbine blades and heat exchangers tubes. Other important advantages of this particular process are the possibility of recovering and re‐utilising the unreacted precursor as well as the high purity of the produced coatings in comparison with those produced by other commercially available technologies. It is well known that the higher the contamination degree, the lower the useful life of this type of coatings. The pilot plant has a deposition chamber with a useful coating zone of 30 cm in length and 18 cm in diameter, heated by a three zone furnace equipped with a pumping system that allows working pressures of 0.1–100 mbar. The system can be manually or automatically controlled and can be easily adapted to deposit other materials. By heat treating the pure Al coatings deposited on Ni base superalloys, Ni aluminide coatings have been obtained and excellent cyclic oxidation behaviour has been observed at 1000 °C. Al has also been deposited on ferritic steels (P91 and 92) and after a suitable heat treatment Fe aluminide coatings with excellent steam oxidation resistance have been obtained. Another potential important use of this process is the deposition of dense aluminium coatings for cadmium replacement in several industrial applications.  相似文献   

19.
Thick quasicrystalline (QC) Al-Cu-Fe coatings obtained by electron-beam physical vapour deposition (EB-PVD) on titanium substrates at different temperatures have been used for damping measurements. The measurements were performed by the method of free-decay vibrations with using flat cantilever specimens covered with the QC coatings in the strain amplitude range of 10− 4-10− 3 and in the temperature range of 290-620 K. We have studied the intrinsic damping capacity of the QC coatings with different grain sizes as a function of strain amplitude using a calculation procedure. The intrinsic damping capacity of all the QC materials is found to increase progressively with temperature in the whole strain amplitude range. It was found that decreasing of the QC grain size to nanoscale values leads to a significant increase of their damping capacity at temperatures above 520 K. Possible mechanisms of dissipation of mechanical energy in nanostructured quasicrystals at elevated temperatures are discussed.  相似文献   

20.
Pratt & Whitney has accumulated more than three decades of experience with thermal barrier coatings (TBCs). These coatings were originally developed to reduce surface temperatures of combustors of JT8D gas turbine engines to increase the thermal fatigue life of the components. Continual improvements in de-sign, processing, and properties of TBCs have extended their applications to other turbine components, such as vanes, vane platforms, and blades, with attendant increases in performance and component du-rability. Plasma-spray-based generation I (Gen I) combustor TBCs with 7 wt % yttria partially stabilized zirconia deposited by air plasma spray (APS) on an APS NiCoCrAlY bond coat continues to perform ex-tremely well in all product line engines. Durability of this TBC has been further improved in Gen II TBCs for vanes by incorporating low-pressure chamber plasma-sprayed NiCoCrAl Y as a bond coat. The modi-fication has improved TBC durability by a factor of 2.5 and altered the failure mode from a “black fail-ure” within the bond coat to a “white failure” within the ceramic. Further improvements have been accomplished by instituting a more strain-tolerant ceramic top layer with electron beam/physical vapor deposition (EB-PVD) processing. This Gen III TBC has demonstrated exceptional performance on rotating airfoils in high-thrust-rated engines, improving blade durability by three times through elimination of blade creep, fracture, and rumpling of metallic coatings used for oxi-dation protection of the airfoil surfaces. A TBC durability model for plasma-sprayed as well as EB-PVD systems is proposed that involves the accumulation of compressive stresses during cyclic thermal expo-sure. The model attempts to correlate failure of the various TBCs with elements of their structure and its degradation with thermocyclic exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号