首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aims of this investigation were to determine whether viable cultures of lactic acid-producing organisms (LAB) can bind dietary carcinogens and to assess the consequences of binding for the absorption from the gut, distribution in the body and in vivo genotoxicity of ingested carcinogens. The carcinogens used in this study were ones known to be present in the human diet, namely benzo[a]pyrene (B(a)P, aflatoxin B1 (AFB1) and the cooked food carcinogens 2-amino-3-methyl-3H-imidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 5-phenyl-2-amino-1-methylimidazo [4,5-f]pyridine (PhIP) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2). They represent a range of structural types so that the specificity of any binding effects could be addressed. Of the carcinogens tested, B(a)P and Trp-P-2 were bound most effectively by the two LAB strains Bifidobacterium longum and Lactobacillus acidophilus. AFB1 was poorly bound, while MeIQx, MeIQ, PhIP and IQ were bound to an intermediate degree. The extent of the binding of the heterocyclic amine carcinogens was dependent on the pH conditions during incubation and this effect was more apparent with B. longum than with L. acidophilus. Using the host-mediated assay (HMA), an in vivo bacterial mutation assay, it was demonstrated that the administration of bacterial cell suspensions of B. longum and L. acidophilus did not lead to a reduction in induced mutagenicity by MeIQ, MeIQx or Trp-P-2, detectable in the liver of treated mice compared with controls. The lack of a protective effect could not be attributed to a short period of contact between bacterial cells and mutagens, since similar results were obtained after preincubating bacteria and mutagens together at pH 5 for 50-60 min, to maximize the binding, before gavaging the mice. Lack of activity of B(a)P in the HMA prevented the determination of the effect of LAB on genotoxicity of the polycyclic aromatic hydrocarbon. However, it is clear from the radiolabel distribution study that the amount of the carcinogen entering the blood was not significantly reduced by B. longum administration. In addition, the amount of radiolabelled B(a)P that reached the target organs (liver, lungs and heart) was also not affected by the LAB administration. A similar lack of inhibitory effect of B. longum on blood concentration and accumulation in the liver of Trp-P-2 was apparent. The results of the present study suggest that although LAB may bind carcinogens in vitro, this does not lead to major changes in absorption and distribution of carcinogens in the body, or in their genotoxic activity in the liver.  相似文献   

2.
Listeria monocytogenes is a facultative intracellular organism that is capable of replicating within macrophage and macrophage-like cells. The species secretes a phosphatidylinositol-specific phospholipase C (PI-PLC) encoded by the plcA gene. A plcA gene from L. monocytogenes was cloned downstream of a gram-positive promoter in the plasmid pWS2-2. To determine what effect plcA would have on intracellular survival when introduced into Listeria innocua, a species that does not growth intracellularly or contain plcA, transformation with the recombinant pWS2-2 plasmid was performed. Phospholipase C activity in Listeria innocua/pWS2-2 was confirmed on a brain heart infusion-phosphatidylinositol agar plate, whereas wild-type L. innocua did not produce PI-PLC activity. Intracellular growth of L. innocua/pWS2-2 was subsequently measured in the macrophage-like cell line J774 by Giemsa staining and viable count determinations at specific time points following infection. The J774 cells infected with wild-type L. innocua showed a falling viable count through 8 h postinfection. Although J774 cells infected with L. innocua/pWS2-2 also initially displayed reduced viable counts, the viable count rose after 6 h postinfection and increased further at 8 h postinfection before a subsequent decline again at 16 h postinfection. Giemsa staining revealed fewer than 6 bacteria in individual macrophage cells at 2 h postinfection, and yet approximately 15% of the J774 cells had 6 to 12 bacteria localized to one area of the macrophage cell after 6 h; moreover, electron micrographs showed that the L. innocua/pWS2-2 cells were replicating inside the phagosome of the host cell. Furthermore, Thoria Sol labeling demonstrated that lysosomes had fused with these phagosomes, and acridine orange staining revealed that the compartments were acidified. These results demonstrate that L. innocua cells transformed with the plasmid-borne plcA gene, and expressing functional PI-PLC, are able to grow intracellularly in what appear to be phagolysosomes, although between 3 and 6 h is needed for this to manifest itself. Intracellular growth specifically in L. innocua may be a secondary function associated with the plcA gene product. The addition of this one gene, plcA, to a species of Listeria that in the wild-type state does not replicate intracellularly apparently can now allow some of the bacteria to transiently multiply inside the phagosomes of host macrophage cells.  相似文献   

3.
Interleukin-10 (IL-10) limits inflammatory responses by inhibiting macrophage activation. In macrophages, IL-10 activates Stat1 and Stat3. We characterized IL-10 responses of the J774 mouse macrophage cell line, and of J774 cells expressing wild-type hIL-10R, mutant hIL-10R lacking two membrane-distal tyrosines involved in recruitment of Stat3 (hIL-10R-TyrFF), a truncated Stat3 (DeltaStat3) which acts as a dominant negative, or an inducibly active Stat3-gyraseB chimera (Stat3-GyrB). A neutralizing anti-mIL-10R monoclonal antibody was generated to block the function of endogenous mIL-10R. IL-10 inhibited proliferation of J774 cells and of normal bone marrow-derived macrophages, but not J774 cells expressing hIL-10RTyrFF. Dimerization of Stat3-GyrB by coumermycin mimicked the effect of IL-10, and expression of DeltaStat3 blocked the anti-proliferative activity of IL-10. For macrophage de-activation responses, hIL10R-TyrFF could not mediate inhibition of lipopolysaccharide-induced TNFalpha, IL-1beta or CD86 expression, while DeltaStat3 did not interfere detectably with these IL-10 responses. Thus signals mediating both anti-proliferative and macrophage de-activation responses to IL-10 require the two membrane-distal tyrosines of IL-10R, but Stat3 appears to function only in the anti-proliferative response.  相似文献   

4.
The current taxonomy of probiotic lactic acid bacteria is reviewed with special focus on the genera Lactobacillus, Bifidobacterium and Enterococcus. The physiology and taxonomic position of species and strains of these genera were investigated by phenotypic and genomic methods. In total, 176 strains, including the type strains, have been included. Phenotypic methods applied were based on biochemical, enzymatical and physiological characteristics, including growth temperatures, cell wall analysis and analysis of the total soluble cytoplasmatic proteins. Genomic methods used were pulsed field gel electrophoresis (PFGE), randomly amplified polymorphic DNA-PCR (RAPD-PCR) and DNA-DNA hybridization for bifidobacteria. In the genus Lactobacillus the following species of importance as probiotics were investigated: L. acidophilus group, L. casei group and L. reuteri/L. fermentum group. Most strains referred to as L. acidophilus in probiotic products could be identified either as L. gasseri or as L. johnsonii, both members of the L. acidophilus group. A similar situation could be shown in the L. casei group, where most of the strains named L. casei belonged to L. paracasei subspp. A recent proposal to reject the species L. paracasei and to include this species in the restored species L. casei with a neotype strain was supported by protein analysis. Bifidobacterium spp. strains have been reported to be used for production of fermented dairy and recently of probiotic products. According to phenotypic features and confirmed by DNA-DNA hybridization most of the bifidobacteria strains from dairy origin belonged to B. animalis, although they were often declared as B. longum by the manufacturer. From the genus Enterococcus, probiotic Ec. faecium strains were investigated with regard to the vanA-mediated resistance against glycopeptides. These unwanted resistances could be ruled out by analysis of the 39 kDa resistance protein. In conclusion, the taxonomy and physiology of probiotic lactic acid bacteria can only be understood by using polyphasic taxonomy combining morphological, biochemical and physiological characteristics with molecular-based phenotypic and genomic techniques.  相似文献   

5.
Infection of human monocyte-derived macrophages (HMDM) and J774 cells (murine macrophage cell line) with several enteroaggregative and cytodetaching Escherichia coli (EAggEC and CDEC, respectively) strains demonstrated that some strains could induce macrophage cell death accompanied by release of lactate dehydrogenase activity and interleukin 1beta (IL-1beta) into culture supernatants. The mode of cell death differed in the two types of macrophages. Damage to macrophage plasma membrane integrity without changes in nuclear morphology resulted in cytolysis of HMDM. This mechanism of cell death has been previously described for virulent Shigella infection of HMDM and is termed oncosis. In contrast, infection of J774 cells by EAggEC and CDEC strains resulted in apoptosis. The presence of alpha-hemolysin (Hly) in EAggEC and CDEC strains appears to be critical for both oncosis in HMDM and apoptosis in J774 cells. Bacteria lacking Hly, including Hly- EAggEC strains as well as enterotoxigenic, enteropathogenic, and enterohemorrhagic E. coli strains, behaved like avirulent Shigella flexneri in that the macrophage monolayers were intact, with no release of lactate dehydrogenase activity or IL-1beta into the culture supernatants.  相似文献   

6.
Recent evidence suggests that bisphosphonates (BPs) may inhibit bone resorption by mechanisms that lead to osteoclast apoptosis. We have previously shown that BPs also reduce cell viability and induce apoptosis in the macrophage-like cell line J774. To determine whether BPs inhibit osteoclast-mediated bone resorption and affect J774 macrophages by the same molecular mechanism, we examined the potency to reduce J774 cell viability of pairs of nitrogen-containing BPs that differ slightly in the structure of the heterocycle-containing side chain but that differ markedly in antiresorptive potency. In all cases, the most potent antiresorptive BP of each pair also caused the greatest loss of J774 viability, while the less potent antiresorptive BPs were also less potent at reducing J774 cell viability. Similarly, the bisphosphinate, phosphonoalkylphosphinate and monophosphonate analogs of BPs (in which one or both phosphonate groups are modified, giving rise to much less potent or inactive antiresorptive agents) were much less potent or inactive at reducing J774 cell viability. Thus, the structure-activity relationships of BPs for inhibiting bone resorption match those for causing loss of cell viability in J774 cells, indicating that BPs inhibit osteoclast-mediated bone resorption and reduce J774 macrophage viability by the same molecular mechanism. Loss of J774 cell viability after treatment with BPs was associated with a parallel increase in apoptotic cell death. We have recently proposed that nitrogen-containing BPs reduce cell viability and cause J774 apoptosis as a consequence of inhibition of enzymes of the mevalonate pathway and hence loss of prenylated proteins. In this study, the BPs that were potent inducers of J774 apoptosis and potent antiresorptive agents were also found to be effective inhibitors of protein prenylation in J774 macrophages, whereas the less potent BP analogs did not inhibit protein prenylation. This provides strong evidence that BPs with a heterocyclic, nitrogen-containing side chain, such as risedronate, inhibit osteoclast-mediated bone resorption and induce J774 apoptosis by preventing protein prenylation.  相似文献   

7.
8.
Ruminal lactic acid-producing bacteria were selectively isolated and enumerated using a one hour aerobic exposure prior to incubation on a semi-selective Lactobacillus medium, MRS, under anaerobic conditions. The technique allowed growth of pure cultures of ruminal Lactobacillus spp. and Streptococcus bovis without supporting the growth of pure cultures of any of the prominent ruminal bacterial species. In mixed cultures, the one hour aerobic pre-incubation inhibited the growth of the obligate anaerobic ruminal bacteria which can otherwise grow on the MRS medium, and the subsequent anaerobic incubation permitted maximal recovery of the weakly aerotolerant ruminal lactic acid-producing Lactobacillus spp. and Streptococcus spp. The efficacy of this technique in selecting exclusively for the lactic acid-producing bacteria was also demonstrated from populations of rumen bacteria from mixed culture end-point in vitro fermentation, continuous in vitro culture and isolations from fresh ruminal samples.  相似文献   

9.
Probiotics are formulations containing live microorganisms or microbial stimulants that have some beneficial influence on the maintenance of a balanced intestinal microbiota and on the resistance to infections. The search for probiotics to be used in prevention or treatment of enteric infections, as an alternative to antibiotic therapy, has gained significant impulse in the last few years. Several studies have demonstrated the beneficial effects of lactic acid bacteria in controlling infection by intestinal pathogens and in boosting the host's nonspecific immune response. Here, we studied the use of Lactobacillus acidophilus UFV-H2b20, a lactic acid bacterium isolated from a human newborn from Vi?osa, Minas Gerais, Brazil, as a probiotic. A suspension containing 10(8) cells of Lactobacillus acidophilus UFV-H2b20 was inoculated into groups of at least five conventional and germfree Swiss mice to determine its capacity to stimulate the host mononuclear phagocytic activity. We demonstrate that this strain can survive the stressing conditions of the intestinal tract in vivo. Moreover, the monoassociation of germfree mice with this strain for seven days improved the host's macrophage phagocytic capacity, as demonstrated by the clearance of a Gram-negative bacterium inoculated intravenously. Monoassociated mice showed an undetectable number of circulating E. coli, while 0.1% of the original inoculum was still present in germfree animals. Mice treated with viable or heat-killed Lactobacillus acidophilus UFV-H2b20 presented similarly improved clearance capacity when compared with germfree controls. In addition, monoassociated mice had twice the amount of Kupffer cells, which are responsible for the clearance of circulating bacteria, compared to germfree controls. These results suggest that the L. acidophilus strain used here stimulates a nonspecific immune response and is a strong candidate to be used as a probiotic.  相似文献   

10.
We have shown by a variety of microscopical and biochemical techniques that Salmonella spp. are cytotoxic for cultured J774A.1 and bone marrow-derived murine macrophages. The cytotoxicity is initially manifested by inhibition of membrane ruffling and macropinocytosis in infected macrophages, and is followed by cell death. Macrophages killed by Salmonella spp. exhibited features of apoptosis such as condensation and fragmentation of chromatin, membrane blebbing, and the presence of cytoplasmic nucleosomes and apoptotic bodies. Cytotoxicity does not require bacterial internalization as cytochalasin D, a drug that prevents bacterial uptake, did not prevent Salmonella-induced macrophage cell death. However, the cytotoxic effects are strictly dependent upon the expression of the invasion-associated Type III protein-secretion system encoded at centisome 63 of the Salmonella chromosome. Wild-type Salmonella typhimurium grown under conditions that do not allow optical expression of this system or strains of Salmonella carrying mutations in genes that encode components of this protein-secretion system were devoid of macrophage cytotoxicity. In addition, mutations in invJ, spaO, sipB, sipC and sipD, which encode proteins that are secreted via this secretion apparatus and are required for bacterial entry into non-phagocytic cells, also abolished the toxicity. In contrast, mutations in sipA and sptP, which encode secreted proteins that are not required for bacterial invasion, had no effect on macrophage cytotoxicity. These results indicate a close correlation between the mechanisms of bacterial internalization into non-phagocytic cells and those that lead to macrophage cytotoxicity. Host-adapted serotypes of Salmonella such as S. typhi, S. gallinarum and S. dublin were also toxic for murine macrophages, indicating that this virulence property is probably present in most Salmonella spp. and is not associated with the mechanisms responsible for host range.  相似文献   

11.
IL-13 is a cytokine produced by T lymphocytes, mast cells, basophils, and certain B cell lines that up-regulates or inhibits various macrophage functions. In the present study we analyzed the mechanisms of suppression of nitric oxide (NO) release by IL-13 in the macrophage cell line J774A.1 and in thioglycolate-elicited mouse peritoneal macrophages. In both cell types efficient reduction (>80%) of NO production required treatment of the macrophages with IL-13 for at least 7 h before stimulation with IFN-gamma and LPS. In J774A.1 cells, increasing concentrations of IFN-gamma partially antagonized the suppression mediated by IL-13, whereas in peritoneal macrophages, the inhibitory effect of IL-13 was largely independent of the concentrations of IFN-gamma and LPS. In J774A.1 cells, IL-13 strongly reduced both the mRNA and protein levels of inducible nitric oxide synthase (iNOS, NOS-2), as determined by Northern blot analysis and immunoprecipitation. In peritoneal macrophages, in contrast, IL-13 decreased iNOS protein and enzyme activities after 8 to 48 h of stimulation, without altering the expression of iNOS mRNA. Pulse labeling with [35S]methionine revealed that IL-13 caused a 4.7-fold reduction of the de novo synthesis of iNOS protein in these cells. These data demonstrate for the first time that IL-13 is capable of regulating iNOS at both the mRNA and translational levels and underline the important influence of the macrophage population when studying mechanisms of cytokine functions.  相似文献   

12.
A high concentration of oxidized low density lipoprotein (Ox-LDL) showed a cytotoxic effect on mouse macrophage-derived J774 cells. Mutant cells were selected from these cells that were resistant to the cytotoxic effect of Ox-LDL. One mutant form, named JO21b cells, was characterized in the present study. In spite of a marked resistance to the cytotoxic effect of Ox-LDL, JO21b cells were apparently as sensitive as the parent cells not only to toxic moieties of Ox-LDL, such as 7-ketocholesterol and lysophosphatidylcholine, but also to t-butyl hydroperoxide, an artificial lipid hydroperoxide analog. However, the cellular association of 125I-labeled Ox-LDL with, and subsequent endocytic degradation by JO21b cells was reduced by 70-80% compared with J774 cells. Similarly, accumulation of cholesteryl esters in JO21b cell by Ox-LDL was also reduced by 70%. Northern blot analyses of type I and type II macrophage scavenger receptors (type I and type II MSR) demonstrated that the mRNA levels of JO21b cells were lower than those of J774 cells. Moreover, peritoneal macrophages obtained from MSR-knockout mice showed a higher resistance to the cytotoxic effect of Ox-LDL than those from their wild-type littermates. Our results suggest, therefore, that macrophage scavenger receptor-mediated endocytic uptake of oxidized low density lipoproteins (Ox-LDL) may play an enhancing role in Ox-LDL cytotoxicity to macrophages or macrophage-derived cells.  相似文献   

13.
14.
Murine macrophages produce large amounts of nitric oxide (NO) on stimulation by interferon (IFN)-gamma and lipopolysaccharide (LPS) or a high concentration of LPS alone. Agents which increase intracellular cAMP levels inhibit cytokine production by macrophages. The effect of increased intracellular cAMP levels on NO production was investigated, using a murine macrophage cell line, J774. NO production was reduced by prolonged elevation of cAMP, but not by a transient increase.  相似文献   

15.
Antimutagenic and binding properties of 28 strains of Lactobacillus gasseri and 2 strains of Bifidobacterium longum on the mutagenicity of amino acid pyrolysates were investigated in vitro using a streptomycin-dependent (SD510) strain of Salmonella typhimurium TA 98. Four strains of L. acidophilus (SBT0274, SBT1703, SBT10239, and SBT10241) and 1 strain of B. longum (SBT 2928) exhibited the highest percentage of antimutagenicity and binding. These 5 strains were further optimized for other physical factors influencing the mechanism of binding, such as cell and mutagen concentration, pH, and incubation time. In all of the selected strains, 2 mg of cells bound with 88 to 95% of 0.2 mg of 3-amino-1,4 dimethyl-5H-pyrido[4,3-b]indole in 30 min at pH 7.0. Other amino acid pyrolysates, such as 3-amino-1-methyl-5H-pyrido[4,3-b]indole, 2-amino-6-methyldi-pyrido[1,2-a:3',2'-d]imidazole, 2-amino-3-methyl-imidazo[4,5,f]quinoline, and 2-amino-3,4-dimethyl-imidazo[4,5,f]quinoline were also tested for the binding ability of these strains. We observed that the complexity of the mutagens greatly influenced the binding properties. The binding of 3-amino-1,4 dimethyl-5H-pyrido[4,3-b]indole to the purified cell walls was very high compared with that of the crude cell wall, peptidoglycan, or the cell extract. Binding was inhibited when the cell walls were subjected to treatment with metaperiodate or trichloroacetic acid but not when they were subjected to treatment with lysozyme, trypsin, or proteinase K, reflecting the role of the carbohydrate component as a binding site.  相似文献   

16.
Lactobacillus acidophilus LF221 produced bacteriocin-like activity against different bacteria including some pathogenic and food-spoilage species. Besides some lactic acid bacteria, the following species were inhibited: Bacillus cereus, Clostridium sp., Listeria innocua, Staphylococcus aureus, Streptococcus D. L. acidophilus LF221 produced at least two bacteriocins, acidocin LF221 A and acidocin LF221 B, which were purified by ammonium sulphate precipitation, ion-exchange chromatography, hydrophobic interaction and reverse-phase FPLC. The antibacterial substances were heat-stable, sensitive to proteolytic enzymes (trypsin, pepsin, pronase, proteinase K) and migrated as 3500- to 5000-Da proteins on sodium dodecyl sulphate/polyacrylamide gel electrophoresis. The sequences of 46 amino-terminal amino acid residues of peptide A and 35 of peptide B were determined. Among the residues identified, no modified amino acids were found. No significant homology was found between the amino acid sequences of acidocin LF221 A and other bacteriocins of lactic acid bacteria and 26% homology was found between acidocin LF221 B and brevicin 27. L. acidophilus LF221 may be of interest as a probiotic strain because of its human origin and inhibition of pathogenic bacteria, especially clostridium difficile.  相似文献   

17.
J774 mouse macrophages express an ionotropic receptor gated by extracellular ATP. Activation of this receptor, currently named purinergic P2Z, causes transmembrane ion fluxes, plasma membrane depolarization, cell swelling and eventual cell death. The physiological role of this receptor is as yet unknown. In the present report we show that macrophage cell clones that hypo-express the P2Z receptor showed a very low degree of spontaneous cell death in culture, while hyper-expressing clones were exceedingly susceptible to cell death. To further support a role for ATP receptors in spontaneous cell death, addition to the macrophage cell cultures of oxidized ATP, a selective inhibitor of ionotropic purinergic receptors, or the ATP-hydrolysing enzyme apyrase, also reduced spontaneous death.  相似文献   

18.
Clodronate, alendronate, and other bisphosphonates are widely used in the treatment of bone diseases characterized by excessive osteoclastic bone resorption. The exact mechanisms of action of bisphosphonates have not been identified but may involve a toxic effect on mature osteoclasts due to the induction of apoptosis. Clodronate encapsulated in liposomes is also toxic to macrophages in vivo and may therefore be of use in the treatment of inflammatory diseases. It is generally believed that bisphosphonates are not metabolized. However, we have found that mammalian cells in vitro (murine J774 macrophage-like cells and human MG63 osteosarcoma cells) can metabolize clodronate (dichloromethylenebisphosphonate) to a nonhydrolyzable adenosine triphosphate (ATP) analog, adenosine 5'-(beta, gamma-dichloromethylene) triphosphate, which could be detected in cell extracts by using fast protein liquid chromatography. J774 cells could also metabolize liposome-encapsulated clodronate to the same ATP analog. Liposome-encapsulated adenosine 5'-(beta, gamma-dichloromethylene) triphosphate was more potent than liposome-encapsulated clodronate at reducing the viability of cultures of J774 cells and caused both necrotic and apoptotic cell death. Neither alendronate nor liposome-encapsulated alendronate were metabolized. These results demonstrate that the toxic effect of clodronate on J774 macrophages, and probably on osteoclasts, is due to the metabolism of clodronate to a nonhydrolyzable ATP analog. Alendronate appears to act by a different mechanism.  相似文献   

19.
In intestinal inflammation, inflammatory cells infiltrate the submucosa and are found juxtaposed to intestinal epithelial cell (IEC) basolateral membranes and may directly regulate IEC function. In this study we determined whether macrophage (M phi), P388D1 and J774A.1, are coupled by gap junctions to IEC lines, Mode-K and IEC6. Using flow cytometric analysis, we show bi-directional transfer of the fluorescent dye, calcein (700 Da) between IEC and M phi resulting in a 3.5-20-fold increase in recipient cell fluorescence. Homocellular and heterocellular dye transfer between M phi and/or IEC was detected in cocultures of P388D1, J774A.1, Mode-K, IEC6 and CMT93. However, transfer between P388D1 and Mode-K was asymmetrical in that transfer from P388D1 to Mode-K was always more efficient than transfer from Mode-K to P388D1. Dye transfer was strictly dependent on IEC-M phi adhesion which in turn was dependent on the polarity of IEC adhesion molecule expression. Both calcein dye transfer and adhesion were inhibited by the addition of heptanol to cocultures. Furthermore we demonstrate both IEC homocellular, and M phi-IEC heterocellular propagation of calcium waves in response to mechanical stimulation, typical of gap junctional communication. Finally, areas of close membrane apposition were seen in electron micrographs of IEC-M phi cocultures, suggestive of gap junction formation. These data indicate that IEC and M phi are coupled by gap junctions suggesting that gap junctional communication may provide a means by which inflammatory cells might regulate IEC function.  相似文献   

20.
Lysosomes are dynamic structures capable of fusing with endosomes as well as other lysosomes. We examined the biochemical requirements for homotypic lysosome fusion in vitro using lysosomes obtained from rabbit alveolar macrophages or the cultured macrophage-like cell line, J774E. The in vitro assay measures the formation of a biotinylated HRP-avidin conjugate, in which biotinylated HRP and avidin were accumulated in lysosomes by receptor-mediated endocytosis. We determined that lysosome fusion in vitro was time- and temperature-dependent and required ATP and an N-ethylmaleimide (NEM)-sensitive factor from cytosol. The NEM-sensitive factor was NSF as purified recombinant NSF could completely replace cytosol in the fusion assay whereas a dominant-negative mutant NSF inhibited fusion. Fusion in vitro was extensive; up to 30% of purified macrophage lysosomes were capable of self-fusion. Addition of GTPgammas to the in vitro assay inhibited fusion in a concentration-dependent manner. Purified GDP-dissociation inhibitor inhibited homotypic lysosome fusion suggesting the involvement of rabs. Fusion was also inhibited by the heterotrimeric G protein activator mastoparan, but not by its inactive analogue Mas-17. Pertussis toxin, a Galphai activator, inhibited in vitro lysosome fusion whereas cholera toxin, a Galphas activator did not inhibit the fusion reaction. Addition of agents that either promoted or disrupted microtubule function had little effect on either the extent or rate of lysosome fusion. The high value of homotypic fusion was supported by in vivo experiments examining lysosome fusion in heterokaryons formed between cells containing fluorescently labeled lysosomes. In both macrophages and J774E cells, almost complete mixing of the lysosome labels was observed within 1-3 h of UV sendai-mediated cell fusion. These studies provide a model system for identifying the components required for lysosome fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号