首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry (GC/IRMS) was used to elucidate the effects of N-atom protonation on the analysis of N and C isotope signatures of selected aromatic amines. Precise and accurate isotope ratios were measured using polydimethylsiloxane/divinylbenzene (PDMS/DVB) as the SPME fiber material at solution pH-values that exceeded the pK(a) of the substituted aniline's conjugate acid by two pH-units. Deviations of δ(15)N and δ(13)C-values from reference measurements by elemental analyzer IRMS were small (<0.9‰) and within the typical uncertainties of isotope ratio measurements by SPME-GC/IRMS. Under these conditions, the detection limits for accurate isotope ratio measurements were between 0.64 and 2.1 mg L(-1) for δ(15)N and between 0.13 and 0.54 mg L(-1) for δ(13)C, respectively. Substantial inverse N isotope fractionation was observed by SPME-GC/IRMS as the fraction of protonated species increased with decreasing pH leading to deviations of -20‰ while the corresponding δ(13)C-values were largely invariant. From isotope ratio analysis at different solution pHs and theoretical calculations by density functional theory, we derived equilibrium isotope effects, EIEs, pertinent to aromatic amine protonation of 0.980 and 1.001 for N and C, respectively, which were very similar for all compounds investigated. Our work shows that N-atom protonation can compromise accurate compound-specific N isotope analysis of aromatic amines.  相似文献   

2.
Yu YX  Wen S  Feng YL  Bi XH  Wang XM  Peng PA  Sheng GY  Fu JM 《Analytical chemistry》2006,78(4):1206-1211
A novel method has been developed for the compound-specific carbon isotope analysis of atmospheric formaldehyde using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The method allows the determination of the delta13C value for atmospheric formaldehyde at nanogram levels with higher precision and lower detection limit. In the present work, atmospheric formaldehyde was collected using NaHSO3-coated Sep-Pak silica gel cartridges, washed out by water, then derivatized by cysteamine of known delta13C value, and the delta13C value of its derivative (thiazolidine) determined by GC/C/IRMS. Finally, the delta13C value of atmospheric formaldehyde could be calculated by a simple mass balance equation between formaldehyde, cysteamine, and thiazolidine. Using three formaldehydes with different delta13C values, calibration experiments were carried out over large ranges of formaldehyde concentrations. The carbon isotope analysis method achieved excellent reproducibility and high accuracy. There was no carbon isotopic fractionation throughout the derivatization processes. The differences in the carbon isotopic compositions of thiazolidine between the measured and predicted values were always <0.5 per thousand, within the specifications of the GC/C/IRMS system. The present method was also compared with the previous 2,4-dinitrophenylhydrazine derivatization method, and this method could be performed with lower analytical error and detection limit. Using this method, four 6-h ambient atmospheric formaldehyde samples were consecutively collected from 8 to 9 March 2005. The results showed that the delta13C values of atmospheric formaldehyde were different during the daytime and nighttime. This method proved suitable for the routine operation and may provide additional insight on sources and sinks of atmospheric formaldehyde.  相似文献   

3.
Interlaboratory comparisons involving nine European stable isotope laboratories have shown that the routine methods of cellulose preparation resulted in data that generally agreed within the precision of the isotope ratio mass spectrometry (IRMS) method used: +/-0.2 per thousand for carbon and +/-0.3 per thousand for oxygen. For carbon, the results suggest that holocellulose is enriched up to 0.39 per thousand in 13C relative to the purified alpha-cellulose. The comparisons of IRMS measurements of carbon on cellulose, sugars, and starches showed low deviations from -0.23 to +0.23 per thousand between laboratories. For oxygen, IRMS measurements varied between means from -0.39 to 0.58 per thousand, -0.89 to 0.42 per thousand, and -1.30 to 1.16 per thousand for celluloses, sugars, and starches, respectively. This can be explained by different effects arising from the use of low- or high-temperature pyrolysis and by the variation between laboratories in the procedures used for drying and storage of samples. The results of analyses of nonexchangeable hydrogen are very similar in means with standard deviations between individual methods from +/-2.7 to +/-4.9 per thousand. The use of a one-point calibration (IAEA-CH7) gave significant positive offsets in delta2H values up to 6 per thousand. Detailed analysis of the results allows us to make the following recommendations in order to increase quality and compatibility of the common data bank: (1) removal of a pretreatment with organic solvents, (2) a purification step with 17% sodium hydroxide solution during cellulose preparation procedure, (3) measurements of oxygen isotopes under an argon hood, (4) use of calibration standard materials, which are of similar nature to that of the measured samples, and (5) using a two-point calibration method for reliable result calculation.  相似文献   

4.
We report the first coupling of comprehensive two-dimensional gas chromatography (GC x GC) to online combustion isotope ratio mass spectrometry (C-IRMS). A GC x GC system, equipped with a longitudinally modulated cryogenic system (LMCS), was interfaced to an optimized low dead volume combustion interface to preserve <300 ms full width at half-maximum (fwhm) fast GC peaks generated on the second GC column (GC2). The IRMS detector amplifiers were modified by configuration of resistors and capacitors to enable fast response, and a home-built system acquired data at 25 Hz. Software was home-written to handle isotopic time shifts of less than one bin (40 ms) and to integrate peak slices to recover isotope ratios from cryogenically sliced peaks. The performance of the GC x GCC-IRMS system was evaluated by isotopic analysis of urinary steroid standards. Steroids were separated by a nonpolar GC1 column (30 m x 0.25 mm, 5% phenyl), modulated into multiple 4- or 8-s cryogenic slices by the LMCS, and then separated on a polar GC2 column (1 or 2 m x 0.1 mm, 50% phenyl). GC2 peak widths from a 1-m column averaged 276 ms fwhm. Steroid standard sliced peaks were successfully reconstructed to yield delta(13)C VPDB values with average precisions of SD(delta(13)C) = 0.30 per thousand and average accuracies within 0.34 per thousand, at 8 ng on column. Two steroids, coeluting in GC1, were baseline separated in GC2 and resulted in delta(13)C VPDB values with average precisions of SD(delta(13)C) = 0.86 per thousand and average accuracies within 0.26 per thousand, at 3 ng on column. Results from this prototype system demonstrate that the enhanced peak capacity and signal available in GC x GC is compatible with high-precision carbon isotope analysis.  相似文献   

5.
A thermal decomposition method was developed and tested for the simultaneous determination of delta 18O and delta 17O in nitrate. The thermal decomposition of AgNO3 allows for the rapid and accurate determination of 18O/ 16O and 17O/16O isotopic ratios with a precision of +/- 1.5 per thousand for delta 18O and +/- 0.11 per thousand for delta 17O (delta 17O = delta 17O - 0.52 x delta 18O). The international nitrate isotope reference material IAEA-NO3 yielded a delta 18O value of +23.6 per thousand and delta 17O of -0.2 per thousand, consistent with normal terrestrial mass-dependent isotopic ratios. In contrast, a large sample of NaNO3 from the Atacama Desert, Chile, was found to have delta 17O = 21.56 +/- 0.11 per thousand and delta 18O = 54.9 +/- 1.5 per thousand, demonstrating a substantial mass-independent isotopic composition consistent with the proposed atmospheric origin of the desert nitrate. It is suggested that this sample (designated USGS-35) can be used to generate other gases (CO2, CO, N2O, O2) with the same delta 17O to serve as measurement references for a variety of applications involving mass-independent isotopic compositions in environmental studies.  相似文献   

6.
Intramolecular carbon isotope ratios reflect the source of a compound and the reaction conditions prevailing during synthesis and degradation. We report here a method for determination of relative (Deltadelta13C) and absolute (delta13C) intramolecular isotope ratios using the volatile lactic acid analogue propylene glycol as a model compound, measured by on-line gas chromatography-pyrolysis coupled to GC-combustion-isotope ratio mass spectrometry. Pyrolytic fragmentation of about one-third of the analyte mass produces optimal fragments for isotopic analysis, from which relative isotope ratios (Deltadelta13C) are calculated according to guidelines presented previously. Calibration to obtain absolute isotope ratios is achieved by quantifying isotope fractionation during pyrolysis with an average fractionation factor, alpha, and evaluated by considering extremes in isotopic fractionation behavior. The method is demonstrated by calculating ranges of absolute intramolecular isotope ratios in four samples of propylene glycol. Relative and absolute isotope ratios were calculated with average precisions of SD(Deltadelta13C) <0.84 per thousand and SD(delta13C) <3.0 per thousand, respectively. The various fractionation scenarios produce an average delta(13)C range of 2 per thousand for each position in each sample. Relative isotope ratios revealed all four samples originated from unique sources, with samples A, B, and D only distinguishable at the position-specific level. Regardless of pyrolysis fractionation distribution, absolute isotope ratios showed a consistent pattern for all samples, with delta13C(3) > delta13C(2) > delta13C(1). The validity of the method was determined by examining the difference in relative isotope ratios calculated through two independent methods: Deltadelta13C calculated directly using previous methods and Deltadelta13C extracted from absolute isotope ratios. Deviation between the two Deltadelta13C values for all positions averaged 0.1-0.2 per thousand, with the smallest deviation obtained assuming equal fractionation across all fragment positions. This approach applies generally to all compounds analyzed by pyrolytic PSIA.  相似文献   

7.
We report an automated method for high-precision position-specific isotope analysis (PSIA) of carbon in amino acid analogues. Carbon isotope ratios are measured for gas-phase pyrolysis fragments from multiple sources of 3-methylthiopropylamine (3MTP) and isoamylamine (IAA), the decarboxylated analogues of methionine and leucine, using a home-built gas chromatography (GC)-pyrolysis-GC preparation system coupled to a combustion-isotope ratio mass spectrometry system. Over a temperature range of 620-900 degrees C, the characteristic pyrolysis products for 3MTP were CH4, C2H6, HCN, and CH3CN and for IAA products were propylene, isobutylene, HCN, and CH3CN. Fragment origin was confirmed by 13C-labeling, and fragments used for isotope analysis were generated from unique moieties with > 95% structural fidelity. Isotope ratios for the fragments were determined with an average precision of SD(delta13C) < 0.3% per thousand, and relative isotope ratios of fragments from different sources were determined with an average precision of SD(delta(delta)13C) < 0.5% per thousand. Delta(delta)13C values of fragments were invariant over a range of pyrolysis temperatures. The delta(delta)13C of complementary fragments in IAA was within 0.8% per thousand of the delta(delta)13C of the parent compounds, indicating that pyrolysis-induced isotopic fractionation is effectively taken into account with this calibration procedure. Using delta(delta)13C values of fragments, delta(delta)13C values were determined for all four carbon positions of 3MTP and for C1, C2, and the propyl moiety of IAA, either directly or indirectly by mass balance. Large variations in position-specific isotope ratios were observed in samples from different commercial sources. Most dramatically, two 3MTP sources differed by 16.30% per thousand at C1, 48.33% per thousand at C2, 0.37% per thousand at C3, and 5.36% per thousand at C(methyl). These PSIA techniques are suitable for studying subtle changes in intramolecular isotope ratios due to natural processes.  相似文献   

8.
Sulfur (S) isotopes have been used to apportion the amount of biogenic and anthropogenic sulfate in remote environments, an important parameter that is used to model the global radiation budget. A key assumption in the apportionment calculations is that there is little isotope selectivity as reduced compounds such as dimethyl sulfide (DMS) are oxidized. This paper describes a method to determine, for the first time, the S isotope composition of methanesulfonic acid (MSA), the product of DMS oxidation. The isotope composition of MSA was measured directly by EA-IRMS and was used as an isotope reference for the method. Synthetic mixtures approximating the conditions expected for aerosol MSA samples were prepared to test this method. First, MSA solutions were measured alone and then in combination with MSA and SO4(2-). In synthetic mixtures, SO4(2-) was separated from MSA by precipitating it as BaSO4 prior to preparation of MSA for isotope analysis. The delta 34S value for MSA solutions was -2.6 per thousand (SD +/- 0.4 per thousand), which is not different from the delta 34S obtained from MSA filtrate after precipitating SO4(2-) from the mixture (-2.7 +/- 0.3 per thousand). However, these values are offset from direct EA-IRMS analysis of MSA used as the isotope reference by -1.1 +/- 0.2 per thousand, and this must be accounted for in reporting MSA measurements. The S isotope measurements using this method approach a limiting value above 300 microg of MSA. This is approximately equal to the MSA found in 20,000 m3 of air, assuming ambient concentrations of approximately 15 ng m(-3). Three samples of MSA from the Pacific Ocean measured using this technique have an average delta 34S value of +17.4 +/- 0.7 per thousand.  相似文献   

9.
We have constructed a cavity ring-down spectrometer employing a near-IR external cavity diode laser capable of measuring 13C/12C isotopic ratios in CO2 in human breath. The system, which has a demonstrated minimum detectable absorption loss of 3.2 x 10(-11) cm(-1) Hz(-1/2), determines the isotopic ratio of 13C16O16O/12C16O16O by measuring the intensities of rotationally resolved absorption features of each species. As in isotope ratio mass spectrometry (IRMS), the isotopic ratio of a sample is compared to that of a standard CO2 sample calibrated to the Pee Dee Belemnite scale and reported as the sample's delta13C value. Measurements of eight replicate CO2 samples standardized by IRMS and consisting of 5% CO2 in N2 at atmospheric pressure demonstrated a precision of 0.22/1000 for the technique. Delta13C values were also obtained for breath samples from individuals testing positive and negative for the presence of Helicobacter pylori, the leading cause of peptic ulcers in humans. This study demonstrates the ability of the instrument to obtain delta13C values in breath samples with sufficient precision to serve as a useful medical diagnostic.  相似文献   

10.
The relevance of both modern and fossil carbon contamination as well as isotope fractionation during preparative gas chromatography for compound-specific radiocarbon analysis (CSRA) was evaluated. Two independent laboratories investigated the influence of modern carbon contamination in the sample cleanup procedure and preparative capillary gas chromatography (pcGC) of a radiocarbon-dead 3,3',4,4',5,5'-hexachlorobiphenyl (PCB 169) reference. The isolated samples were analyzed for their 14C/12C ratio by accelerator mass spectrometry. Sample Delta14C values of -996 +/- 20 and -985 +/- 20 per thousand agreed with a Delta14C of -995 +/- 20 per thousand for the unprocessed PCB 169, suggesting that no significant contamination by nonfossil carbon was introduced during the sample preparation process at either laboratory. A reference compound containing a modern 14C/12C ratio (vanillin) was employed to evaluate process contamination from fossil C. No negative bias due to fossil C was observed (sample Delta14C value of 165 +/- 20 per thousand agreed with Delta14C of 155 +/- 12 per thousand for the unprocessed vanillin). The extent of isotopic fractionation that can be induced during pcGC was evaluated by partially collecting the vanillin model compound of modern 14C/12C abundance. A significant change in the delta13C and delta14C values was observed when only parts of the eluting peak were collected (delta13C values ranged from -15.75 to -49.91 per thousand and delta14C values from -82.4 to +4.71 per thousand). Delta14C values, which are normalized to a delta13C of -25 per thousand, did not deviate significantly (-58.9 to -5.8 per thousand, considering the uncertainty of approximately +/-20 per thousand). This means that normalization of radiocarbon results to a delta13C of -25 per thousand, normally performed to remove effects of environmental isotope fractionation on 14C-based age determinations, also cor-rects sufficiently for putative isotopic fractionation that may occur during pcGC isolation of individual compounds for CSRA.  相似文献   

11.
A new on-line analytical setup for 15N measurements of total dissolved nitrogen (TDN) has been developed through the coupling of a high-temperature catalytic (Ce(IV)O2) oxidation furnace, a Cu reduction furnace, and an isotope ratio mass spectrometer. The detection limit for accurate delta15N measurements is 20 mg of N L-1. For N-containing compounds dissolved in water, a standard deviation on N concentration measurements of 0.2 mg of N L-1, independent of N concentration, has been found. Reproducibility on delta15N increased with increasing N concentration, with standard deviations varying from 0.8 to 0.1 per thousand in the range of 20-100 mg of N L-1. Salt matrixes, in which the N species might be dissolved, could influence the analysis capacity and continuity, mainly at concentrations above 0.1 M. To our knowledge, this system is the first successful on-line setup capable of performing routine delta15N and N concentration measurements of the TDN pool. Potential applications are large and are believed to result in an increased insight in N cycling and dissolved organic nitrogen behavior in terrestrial and aquatic ecosystems.  相似文献   

12.
We describe our development of a CH4 preconcentration system for use with continuous-flow gas chromatograph combustion isotope ratio mass spectrometry (GC/C/IRMS). Precision of measurement of delta13C-CH4 is 0.05/1000 (1sigma) on multiple 60-mL aliquots of the same ambient air sample. The same front-end on-line CH4 preconcentration system allows us to measure deltaD of CH4 by gas chromatography IRMS when the combustion furnace is replaced with a pyrolysis oven (GC/P/IRMS). Precision of measurement for deltaD-CH4 is 1.5/1000 (1sigma) using 120 mL of ambient air based on multiple aliquots of the same air sample. These are the first reported measurements of atmospheric CH4 using GC/P/IRMS methodology. Each isotope analysis can be made much more rapidly (30-40 min) than they could using off-line combustion of an air sample (1-6 h) followed by conventional dual-inlet IRMS measurements (12-20 min), while requiring much less total volume and retaining a comparable level of precision and accuracy. To illustrate the capabilities of our preconcentration GC/C/IRMS system, we compare the results of measurement of 24 background air samples made using both GC/C/IRMS and conventional vacuum line/dual-inlet IRMS methodology. The air samples were collected on a shipboard air sampling transect made across the Pacific Ocean in July 2000 and are part of an ongoing atmospheric CH4 research program. The average difference between the two methods of IRMS analyses on these 24 samples is 0.01 +/- 0.03/1000 (95% confidence interval) for delta3C-CH4. These are the first measurements to be reported of air samples directly intercompared for delta13C-CH4 using both GC/C/IRMS and dual-inlet IRMS measurement methodology. Measurement of deltaD-CH4 of these air samples is also presented as an illustration of the ability of this system to resolve small isotopic differences in remote air. High-precision measurement of delta13C and deltaD of atmospheric CH4 made using our coupled preconcentration GC/IRMS system will greatly improve our ability to utilize isotopic data in understanding spatial and temporal changes in atmospheric CH4 and the biogeochemistry of its sources and sinks.  相似文献   

13.
Zhang HX  Cao AM  Hu JS  Wan LJ  Lee ST 《Analytical chemistry》2006,78(6):1967-1971
An electrochemical sensor for ultratrace nitroaromatic compounds (NACs) using mesoporous SiO2 of MCM-41 as sensitive materials is reported. MCM-41 was synthesized and characterized by scanning electron microscope, transmission electron microscopy, and small-angle X-ray diffraction. Glassy carbon electrodes modified with MCM-41 show high sensitivity for cathodic voltammetric detection of NACs (including 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), 2,4-dinitrotoluene, and 1,3-dinitrobenzene) down to the nanomolar level. The high sensitivity is attributed to the strong adsorption of NACs by MCM-41 and large surface area of the working electrode resulting from MCM-41 modification. The voltammetric response is fast, and the detection of NACs can be finished within 14 s. SiO2 nanospheres were similarly used to modify glassy carbon electrodes for electrochemical detection of TNT and TNB. The detection limit of SiO2 nanosphere-modified electrodes is lower than that of MCM-41-modified electrodes, possibly due to the smaller surface area of SiO2 nanospheres than mesoporous MCM-41. The results show mesoporous SiO2-modified glassy carbon electrodes, particularly MCM-41-modified electrodes, open new opportunities for fast, simple, and sensitive field analysis of NACs.  相似文献   

14.
A novel derivatization procedure, N-acetyl methyl (NACME) esterification, was developed to improve the accuracy and precision of amino acid delta13C value determination using gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS). Standard mixtures of 15 protein amino acids were converted to NACME and N-acetyl-isopropyl (NAIP) esters; the latter established derivative was employed for comparison purposes. Both procedures yielded baseline-resolved peaks for all 15 amino acids when GC columns coated with polar stationary phases were employed. For NACME esters, the methylation conditions governed reaction yields, with highest yields observed when a 1 h, 70 degrees C methylation procedure (anhydrous MeOH/acetyl chloride, 25:4, v/v) was performed. The mean derivatization yields expressed relative to an underivatized coinjected standard (n-nonadecane) for both NACME and NAIP esters were identical. Likewise, the mean kinetic isotope effects (KIEs) were not significantly different (KIE(NACME) = 1.036; KIE(NAIP) = 1.038) and were shown in both cases to be reproducible. The mean reproducibility obtained from 15 replicates (3 x batches of 5) of both derivatives was strong (mean STDV(NACME) = 0.3 per thousand and STDV(NAIP) = 0.4 per thousand). The isotopic robustness of both derivatization procedures was observed over a concentration range of 52,500 microg of amino acid. NACME esters displayed low errors (+/-0.6 per thousand for phenylalanine to +/-1.1 per thousand for serine) due to the higher sample-to-derivative carbon ratio of this derivative. Finally, the integrity of the new NACME procedure was confirmed through analysis of diet and bone collagen amino acids of rats reared on C3 or C4 diets, which indicated the high degree of both accuracy and precision of the delta13C values obtained for individual amino acids.  相似文献   

15.
Nitrite is an important intermediate species in the biogeochemical cycling of nitrogen, but its role in natural aquatic systems is poorly understood. Isotopic data can be used to study the sources and transformations of NO2- in the environment, but methods for independent isotopic analyses of NO2- in the presence of other N species are still new and evolving. This study demonstrates that isotopic analyses of N and O in NO2- can be done by treating whole freshwater or saltwater samples with the denitrifying bacterium Stenotrophomonas nitritireducens, which selectively reduces NO2- to N2O for isotope ratio mass spectrometry. When calibrated with solutions containing NO2- with known isotopic compositions determined independently, reproducible delta15N and delta18O values were obtained at both natural-abundance levels (+/-0.2-0.5 per thousand for delta15N and +/-0.4-1.0 per thousand for delta18O) and moderately enriched 15N tracer levels (+/-20-50 per thousand for delta15N near 5000 per thousand) for 5-20 nmol of NO2- (1-20 micromol/L in 1-5 mL aliquots). This method is highly selective for NO2- and was used for mixed samples containing both NO2- and NO3- with little or no measurable cross-contamination. In addition, mixed samples that were analyzed with S. nitritireducens were treated subsequently with Pseudomonas aureofaciens to reduce the NO3- in the absence of NO2-, providing isotopic analyses of NO2- and NO3- separately in the same aliquot. Sequential bacterial reduction methods like this one should be useful for a variety of isotopic studies aimed at understanding nitrogen cycling in aquatic environments. A test of these methods in an agricultural watershed in Indiana provides isotopic evidence for both nitrification and denitrification as sources of NO2- in a small stream.  相似文献   

16.
We developed a simple measurement system for delta17O in nanomole quantities of CO2 using continuous flow isotope ratio mass spectrometry (CF-IRMS). The analytical system consisted of a sample injection system, a helium-purged CO2 purification line, a capillary GC, a combustion unit, and CF-IRMS. A unique feature of the system is that we use molecular CO2 to determine the isotopic compositions including delta17O. The delta17O of CO2 in a sample is calculated from the mass ratios of both 45/44 and 46/44 of two different kinds of CO2, which have been purified quantitatively from different aliquots of a sample. While one aliquot (rCO2) flows into IRMS directly, the other (eCO2) flows through a CuO unit (900 degrees C) prior to injection into IRMS, to exchange oxygen atoms in the sample CO2 molecules with those in CuO for which we can assume Delta17O = 0. In our system, we introduce both rCO2 and eCO2 alternately to IRMS repeatedly by using an automatic multianalytical system to improve analytical precision statistically. The standard deviation of 0.35 per thousand for Delta17O can be realized using as little as 8.7 nmol CO2 in a approximately 3-h analysis. Based on this system, we have quantified delta17O in the stratospheric CO2 over Japan.  相似文献   

17.
Stable isotope mass spectrometric approaches are proving to be valuable tools in unravelling biotic interactions in complex ecosystems, yielding information on trophic preferences and functional roles of individual species. Gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) provides considerable opportunities to assist in studies concerned with ecosystem processes mediated by soil invertebrates and microorganisms by determination of delta(13)C values of individual compounds, for example, lipids, amino acids etc. However, techniques conventionally adopted for "wet" chemical extractions and derivatizations necessary for compound-specific stable isotope determinations restrict the size of soil organism that can be studied and can limit investigations of individuals or even parts of individuals. We demonstrate here that individual soil mesofauna can be probed directly for their fatty acid stable isotope signatures by pyrolysis-GC/C/IRMS. A thermally assisted hydrolysis and methylation (THM) reaction is described for the determination of delta(13)C fatty acid values using trimethylsulfonium hydroxide (TMSH). Authentic fatty acids, acyl lipids, and individual Collembola (Folsomia candida) raised on C(3) and C(4) isotopically labeled yeast were analyzed initially by py-GC/MS with TMSH and then by py-GC/C/IRMS. A kinetic isotope effect (KIE) observed with the THM reaction prevents direct calculation of the fatty acid delta(13)C values by simple mass balance equations. However, the KIE is shown to be both reproducible and robust and can therefore be accounted for by the use of correction factors. The fatty acid methyl ester compositions of individual F. candida and their respective delta(13)C values were determined and shown to agree with those obtained by conventional "wet" chemical procedures applied to much larger numbers of Collembola, thus enhancing the scope to which stable isotopes can be applied to the study of invertebrates in complex food webs in any environment.  相似文献   

18.
Carbon isotope ratios in higher-plant organic matter (delta(13)C(plant)) have been shown in several studies to be closely related to the carbon isotope composition of the ocean-atmosphere carbon reservoir, and, in particular, the isotopic composition of CO(2). These studies have primarily been focused on geological intervals in which major perturbations occur in the oceanic carbon reservoir, as documented in organic carbon and carbonates phases (e.g. Permian-Triassic and Triassic-Jurassic boundary, Early Toarcian, Early Aptian, Cenomanian-Turonian boundary, Palaeocene-Eocene Thermal Maximum (PETM)). All of these events, excluding the Cenomanian-Turonian boundary, record negative carbon isotope excursions, and many authors have postulated that the cause of such excursions is the massive release of continental-margin marine gas-hydrate reservoirs (clathrates). Methane has a very negative carbon isotope composition (delta(13)C, ca. 60 per thousand ) in comparison with higher-plant and marine organic matter, and carbonate. The residence time of methane in the ocean-atmosphere reservoir is short (ca. 10 yr) and is rapidly oxidized to CO(2), causing the isotopic composition of CO(2) to become more negative from its assumed background value (delta(13)C, ca. -7 per thousand ). However, to date, only the Early Toarcian, Early Aptian and PETM are well-constrained chronometric sequences that could attribute clathrate release as a viable cause to create such rapid negative delta(13)C excursions. Notwithstanding this, the isotopic analysis of higher-plant organic matter (e.g. charcoal, wood, leaves, pollen) has the ability to (i) record the isotopic composition of palaeoatmospheric CO(2) in the geological record, (ii) correlate marine and non-marine stratigraphic successions, and (iii) confirm that oceanic carbon perturbations are not purely oceanographic in their extent and affect the entire ocean-atmosphere system. A case study from the Isle of Wight, UK, indicates that the carbon isotope composition of palaeoatmospheric CO(2) during the Mid-Cretaceous had a background value of 3 per thousand, but fluctuated rapidly to more positive (ca. +0.5 per thousand ) and negative values (ca. 10 per thousand ) during carbon cycle perturbations (e.g. carbon burial events, carbonate platform drowning, large igneous province formation). Hence, fluctuations in the carbon isotope composition of palaeoatmospheric CO(2) would compromise our use of palaeo-CO(2) proxies that are dependent on constant carbon isotope ratios of CO(2).  相似文献   

19.
Upon closer inspection, the classical view of the synchronous relationship between tropospheric methane mixing ratio and Greenland temperature observed in ice samples reveals clearly discernable variations in the magnitude of this response during the Late Pleistocene (<50kyr BP). During the Holocene this relationship appears to decouple, indicating that other factors have modulated the methane budget in the past 10kyr BP. The delta13CH4 and deltaD-CH4 of tropospheric methane recorded in ice samples provide a useful constraint on the palaeomethane budget estimations. Anticipated changes in palaeoenvironmental conditions are recorded as changes in the isotope signals of the methane precursors, which are then translated into past global delta13CH4 and deltaD-CH4 signatures. We present the first methane budgets for the late glacial period that are constrained by dual stable isotopes. The overall isotope variations indicate that the Younger Dryas (YD) and Preindustrial Holocene have methane that is 13C- and 2H-enriched, relative to Modern. The shift is small for delta13CH4 (approx. 1 per thousand) but greater for deltaD-CH4 (approx. 9 per thousand). The YD delta13CH4-deltaD-CH4 record shows a remarkable relationship between them from 12.15 to 11.52kyr BP. The corresponding C- and H-isotope mass balances possibly indicate fluctuating emissions of thermogenic gas. This delta13CH4-deltaD-CH4 relationship breaks down during the YD-Preboreal transition. In both age cases, catastrophic releases of hydrates with Archaeal isotope signatures can be ruled out. Thermogenic clathrate releases are possible during the YD period, but so are conventional natural gas seepages.  相似文献   

20.
Here we describe an on-line method for measuring delta(37)Cl values of chloride bearing salts, waters, and organic materials using multicollector continuous-flow isotope ratio mass spectrometry (CF-IRMS). Pure AgCl quantitatively derived from total Cl in water, inorganic Cl salts, and biological samples was reacted with iodomethane in evacuated 10-mL stopper sealed glass vials to produce methyl chloride gas. A GV Instruments Multicollector CF-IRMS with CH(3)Cl optimized collector geometry was modified to accommodate a headspace single-sample gas injection port prior to a GC column. The GC column was a 2-m Porapak-Q packed column held at 160 degrees C. The resolved sample CH(3)Cl was introduced to the IRMS source in a helium stream via an open split. delta(37)Cl values were calculated by measurement of CH(3)Cl at m/z 52/50 and by comparison to a reference pulse of CH(3)Cl calibrated to standard mean ocean chloride. Sample CH(3)Cl analysis time was approximately 6 min. Injections of 40 microL of pure CH(3)Cl gas yielded a repeatability (+/-SD) of +/-0.06 per thousand for delta(37)Cl (n = 10). Combined GC and IRMS source linearity for CH(3)Cl was <0.2 per thousand/nA (V) peak height. External repeatability, based on processing of seawater and NaCl reference solutions, was better than +/-0.08 per thousand. The smallest sample for delta(37)Cl analysis by this method was approximately 0.2 micromol of Cl. Selected results from a river basin and biological samples study illustrate the potential of on-line chlorine isotope assays in environmental pollution studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号