共查询到20条相似文献,搜索用时 0 毫秒
1.
现阶段基于深度学习的故障诊断需要大量的数据,而制作数据集是一项耗时耗力的工作。针对这一缺点,提出一种基于门控循环单元(Gate Recurrent Unit,GRU)与迁移学习的滚动轴承故障诊断方法。该方法利用与目标域特征相似且易获得源域数据的特点训练网络,确定网络结构和参数,冻结经过训练的卷积神经网络(Convolutional Neural Networks,CNN)和GRU,用小样本目标域数据训练该网络,微调全连接层和分类层,达到迁移的目的。实验对比分析表明,基于GRU与迁移学习的滚动轴承故障诊断方法明显优于基于BP神经网络和基于概率神经网络(Probabilistic Neural Network,PNN)方法的故障诊断,能够更加准确地进行故障分类,为小样本数据集下的故障诊断提出了新思路。 相似文献
2.
针对传统滚动轴承故障诊断方法训练时间长和效率低的问题,提出一种基于卷积神经网络(convolutional neural networks,简称CNN)和宽度学习系统(broad learning system,简称BLS)的故障诊断方法,实现了端到端的快速准确模式识别.首先,建立CNN与BLS结合的宽度卷积学习系统(broad convolutional learning system,简称BCLS),利用CNN提取信号特征和BLS进行分类,获得系统输出;其次,通过残差学习增加BLS层数,形成堆叠宽度卷积学习系统(stacked broad convolutional learning system,简称SBCLS),优化预测输出与真实标签的误差,对轴承故障模式进行识别;最后,通过试验将所提方法与3种BLS方法的预测结果进行了比较验证.结果表明,与几种常见故障诊断方法相比,所提方法诊断效果更佳,具有更高的准确率和训练效率,在边缘端的智能故障诊断中具有较好的应用前景. 相似文献
3.
针对滚动轴承故障识别过程中,难以提取细微故障特征的问题,提出一种基于融合卷积神经网络与基于粒子群优化算法的支持向量机相结合的滚动轴承故障诊断方法。该方法将轴承振动信号同时作为一维卷积神经网络和二维卷积神经网络的输入信号,并在汇聚层中将提取到的故障信息融合,最后通过优化后的分类器提高故障识别准确率。为了验证该方法的诊断性能,将与融合卷积神经网络同规格的一维卷积神经网络和二维卷积神经网络进行对比。试验结果表明,该方法不仅可以提高故障识别准确率,还可以在信号受到噪声污染时保持良好的诊断性能。 相似文献
4.
曹梦婷;谷玉海;王红军;徐小力 《机械设计与制造》2025,(4):269-273
目前基于深度学习的滚动轴承故障诊断方法已经在机械设备领域得到了广泛的学习,而进行深度学习训练需要海量数据样本,针对深度学习方法在这一方面的不足,这里提出一种基于域迁移学习的滚动轴承故障诊断方法,能够在小样本数据量的前提下依旧对滚动轴承进行故障诊断并取得良好的诊断结果。首先,根据一维卷积神经网络和长短期记忆网络构造一个域迁移深度学习网络,将获得的源域数据与目标域数据作为输入,其次,经过网络训练之后,对提取出的故障特征分类。实验结果证明,在小样本数据量的前提下,采用的方法和基于无迁移的深度学习故障诊断方法相比,故障特征的分类精度更高,提高了故障诊断的正确率。 相似文献
5.
针对多工况约束下滚动轴承故障诊断的难题,提出一种基于孪生域对抗迁移学习的滚动轴承故障诊断方法。首先,基于重采样扩充故障样本,通过降采样平衡正常样本,以防止样本不平衡带来的过拟合问题;然后,利用孪生神经网络对迁移学习特征提取的卷积层和池化层进行改进,应对故障样本稀缺问题,缩小不同工况下故障样本分布的差异,提高模型的泛化性;最后,基于公开和实测轴承故障数据集对算法进行全面性能评估。试验结果表明:孪生域对抗迁移学习(SDANN)对CWRU,MFPT和实测轴承数据集的诊断准确率及误差均值分别为(97.26±0.42)%,(95.18±0.28)%和(94.04±0.40)%,相比传统域对抗迁移学习(DANN)方法的平均准确率分别提高6.41%,12.5%和2.54%,误差均值分别降低1.16%,2.66%和0.43%,诊断时间分别加快1.39%,3.77%和9.95%;加入0和-10dB噪声时,孪生域对抗迁移学习的诊断准确率最高仅降低1.63%;对CWRU与MFPT数据集跨域诊断时,孪生域对抗迁移学习的准确率及误差均值为(91.04±1.05)%;总体而言,孪生域对抗迁移学习对滚动轴承的故障诊断准确率较高且具备良好的抗噪性和迁移诊断效果。 相似文献
6.
7.
针对基于卷积神经网络(Convolution Neural Network,CNN)的滚动轴承状态识别中超参数选用对于人工经验的高度依赖性问题,提出一种基于蜉蝣算法(Mayfly Algorithm,MA)优化CNN的故障诊断模型CNN-MA。首先,该模型利用MA强大的寻优能力,以CNN的诊断精度作为优化目标,自适应调节CNN中的超参数;其次,采用归一化后的原始信号图像集,尽可能保留了信号的特征;最后,为了评估参数在优化模型中的有效性,与粒子群优化(Particle Swarm Optimization,PSO)算法的CNN模型进行对比。所提模型拥有更稳定的性能和更高的识别精度,同时具备良好的抗噪能力,充分显示了在滚动轴承故障诊断应用中的可行性和可靠性。 相似文献
8.
针对传统轴承故障诊断方法在实际工况、嘈杂环境中对轴承故障识别准确率较低的问题,提出了基于局部均值分解(LMD)和改进的卷积神经网络(CNN)轴承故障诊断方法。对振动信号进行局部均值分解得到若干乘机函数分量,选择合适的分量生成重构信号作为网络输入,提出一种改进的卷积神经网络框架,提高多变量时间序列的诊断效率,选用凯斯西楚大学滚动轴承数据进行试验验证,运用k-折交叉验证来评估模型性能,并通过模拟工业环境的噪声验证了的抗噪性能。结果表明,相较与传统诊断模型在噪声环境下对滚动轴承故障诊断有更好的识别效果。 相似文献
9.
针对传统故障诊断方法识别准确率低、泛化能力差,而基于深度学习的故障诊断普遍存在需要海量训练数据的问题,提出了一种基于经验模态分解(empirical mode decomposition,简称EMD)与卷积神经网络(convolutional neural networks,简称CNN)的滚动轴承智能故障诊断方法.首先... 相似文献
10.
韩涛;袁建虎;唐建;安立周 《机械传动》2016,40(12):139-143
提出一种基于多小波变换(MWT)和卷积神经网络(CNN)的滚动轴承智能复合故障诊断方法。对滚动轴承的振动信号进行去除后处理的MWT,得到相应的多小波系数分支;用所得多小波系数分支构造特征图,建立CNN分类器组模型,以实现滚动轴承复合故障的智能诊断。基于人工轴承故障数据集进行了实验研究,同时对诊断方法作了优化改进,即对振动信号进行MWT,用所得多小波系数矩阵构造特征图,建立CNN分类器模型,并进行了对比实验研究。结果表明,该方法能有效识别滚动轴承的复合故障,改进的方法能有效提高故障识别率,降低训练成本。 相似文献
11.
针对滚动轴承性能退化状态的识别问题,提出了基于一维卷积神经网络的故障诊断方法。以轴承原始振动信号为输入,利用一维卷积神经网络自适应学习特征和分类的能力,实现由数据到识别结果的\"端到端\"诊断,避免了人为因素的干扰。通过凯斯西储大学不同故障尺寸的滚动轴承故障数据(模拟不同故障程度)加以验证,所建立python-Keras深度学习模型的诊断正确率达到98.2%。用辛辛那提大学滚动轴承全寿命周期数据对退化全过程进行诊断,根据轴承原始信号时域指标变化将全周期分为正常、轻微退化、中度退化、严重退化和失效5种程度,通过一维卷积神经网络对轴承原始数据进行有监督学习,所建立python-Keras深度学习模型的故障诊断平均准确率为93%。 相似文献
12.
针对传统轴承故障诊断需要依靠先验知识和专业技术的问题,提出一种端到端的流程架构和基于卷积神经注意力模块-卷积神经网络(Convolutional Block Attention Module-Convolution Neural Network, CBAM-CNN)的滚动轴承故障诊断模型,该方法能够自适应提取故障特征,摆脱了对人工处理复杂信号的依赖。首先,将一维故障振动信号转换为二维图像,并用伪彩色将其变为RGB三通道图像;其次,通过注意力机制CBAM模型,注重其重要的特征信息,调整权重参数,之后将其输入卷积神经网络,并添加Dropout层来增强模型的鲁棒性,添加L2正则化来防止过拟合且提升模型的泛化能力;最后,对不同类型的滚动轴承故障进行分类,完成滚动轴承故障诊断。为了验证CBAM-CNN模型的性能,使用了美国凯斯西储大学轴承实验台数据集进行验证,并将该网络模型应用于轴承实验台。结果表明,与其他诊断方法相比,该方法不仅结构简单,而且诊断高效,故障诊断效果良好。 相似文献
13.
常志远;刘昌奎;李志农;周世健 《轴承》2024,(8):53-58+67
针对滚动轴承故障诊断任务的泛化问题,提出一种基于ACON激活函数和卷积神经网络(CNN)的故障诊断方法(ACON-CNN模型)。构造一种自适应激活因子,利用ACON激活函数的自适应激活特性增强整个卷积神经网络的自适应特征能力;同时构造一种基于稀疏结构的神经元簇,增加诊断模型的稳定性。对CWRU轴承数据集以及航空轴承数据集的试验结果表明:针对同一轴承不同采集端故障数据的训练与识别中,ACON-CNN模型具有比原始CNN,FFT-CNN,LSTM-CNN更好的识别效率和鲁棒性;在不同轴承样本数据集的迁移学习中,ACON激活函数和稀疏神经元簇的综合作用也使ACON-CNN模型获得了更好的泛化性能和识别效果。 相似文献
14.
针对滚动轴承故障诊断在工程实际中故障数据稀缺的问题,提出一种基于shapelets时间序列的多源迁移学习滚动轴承故障诊断方法。首先利用典型故障信息丰富、标记样本充足的滚动轴承数据构建多源域数据集,使用不同源域的数据对源域特征提取器与分类器进行预训练;然后利用基于动态时间规整的shapelets学习算法提取源域与目标域的shapelets作为判别结构,通过度量判别结构优化源域数据,对源域网络进行微调以得到诊断模型;最后根据每个源域与目标域的shapelets之间的差异,利用自适应域权重对各分类器的结果进行聚合得出诊断结果。实验结果表明,该方法在小样本与强噪声的情况下具有较高的故障诊断准确率。 相似文献
15.
16.
17.
针对卷积神经网络难以处理时间序列数据和循环神经网络难以提取数据深层特征的问题,提出了一种基于深度卷积网络和循环神经网络相结合的滚动轴承故障诊断方法。首先,使用格拉姆角场(GAF)编码将一维轴承振动信号构造为时序图像并划分为训练集、验证集和测试集;然后,将训练集和验证集输入VGG16模型进行特征提取,将提取到的特征输入RNN进行训练;最后,用测试集验证CNN-RNN模型的有效性。XJTU-SY和CWRU轴承数据集的试验结果表明:相对于HHT和GASF编码方法,GADF编码方法对原始信号故障特征的表达能力更强;相对于独立的CNN模型或RNN模型,CNN-RNN模型的识别效果更好;GADF编码方法与CNN-RNN模型相结合时具有更高的识别率。 相似文献
18.
19.
20.
针对滚动轴承在强噪声背景时运行存在不同工况下样本分布不同而导致传统模型诊断精度较低的问题,提出一种改进一维卷积神经网络的滚动轴承变工况故障诊断方法。以一维卷积神经网络模型为基础,通过全局均值池化代替全连接层,减少模型训练参数,同时在全局均值池化层引入最大均值差异域自适应迁移学习实现滚动轴承变工况故障诊断。与ResNet和1DCNN+DA等方法的对比分析表明,将1DCNN模型中的FC层通过GAP层代替并与DA迁移学习相结合,能够提高整个模型的泛化性和诊断精度。 相似文献