首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
何志成  夏智勋  胡建新  马立坤 《含能材料》2020,28(12):1190-1199
电控固体推进剂(Electrically Controlled Solid Propellants, ECSPs)具有通电燃烧、断电熄灭,燃速实时可调的特性,在微小型及大型固体火箭发动机领域中都具有良好的应用前景。总结了近年来国内外ECSPs的制备方法,主要为溶胀法、熔融混合法、室温法、冷冻-解冻法和3D打印法,综述了ECSPs热稳定性、电阻特性、点火及燃烧特性、老化特性及电弧烧蚀与羽流特性等研究进展,指出具有低毒、高比冲、高可控性的硝酸羟胺基电控固体推进剂及具有高熄火压强阈值的高氯酸盐基电控固体推进剂是目前研究重点,提出未来ECSPs的研究方向在于加强和完善ECSPs性能研究、开发ECSPs点火及燃烧性能测试装置和规范测试方法、提高ECSPs燃速特性以及深入研究ECSPs点火及燃烧机理,建立点火和燃烧模型等。  相似文献   

2.
负压环境下铝镁贫氧推进剂激光点火及燃烧特性   总被引:1,自引:0,他引:1  
赖华锦  陈雄  周长省  相恒升 《含能材料》2017,25(10):817-821
为研究不同负压对铝镁贫氧推进剂的点火及燃烧特性的影响,在负压环境下(0.01,0.02,0.04,0.06,0.08,0.1 MPa)和不同热流下(1.26,1.86,2.23,2.79 W·mm~(-2))采用CO_2激光点火系统对铝镁贫氧推进剂进行点火实验,使用高速摄影仪记录点火燃烧过程,使用两个光电二极管同时监测激光和火焰信号得到其点火延迟时间,研究了负压对推进剂点火延迟时间、燃烧过程和燃速的影响。结果表明,压强影响推进剂热解气体的扩散,压强为0.08 MPa时,初焰为圆柱状,随着压强降低至0.02 MPa,初焰为圆球状;随着压强的降低,推进剂点火延迟时间增加,但随着热流密度的增大,压强对点火延迟时间的影响显著降低;压强对推进剂燃速影响较大,随着压强的降低,推进剂燃速降低,当压强从0.1 MPa降至0.01 MPa时,燃速降低47%;同时,在负压环境下,Vielle燃速公式更适用于表征铝镁贫氧推进剂的燃速特性。  相似文献   

3.
为了适应在不同巡航条件下(不同飞行高度和速度)富燃燃气流量可以调节的要求,用于非壅塞固体火箭冲压发动机贫氧推进剂的燃速压强指数必须大于0.5。文中论及了适应上述需求的推进剂应具有的燃速特性和力学性能,研究了AP粒度和燃速催化剂对推进剂燃速的影响,介绍了用于贫氧推进剂燃烧性能测试的设备及测试方法。研究表明,贫氧推进剂的燃烧机理与常规的AP推进剂燃烧机理之间存在显著的差异。文中提出了贫氧推进剂的稳态燃烧模型以及燃速温度敏感系数的计算模型,并对上述模型进行了计算研究。  相似文献   

4.
为了研究NEPE推进剂的点火燃烧特性,搭建了CO2激光点火试验平台,使用高速摄影仪拍摄在不同气体环境下NEPE推进剂的燃烧过程,通过信号采集系统测量NEPE推进剂的点火延迟时间,对NEPE推进剂在0.1~3.0 MPa氮气及空气中的点火燃烧特性进行了研究。结果表明,环境压强和环境气体会影响NEPE推进剂的点火燃烧过程,环境压强越大,NEPE推进剂燃烧越激烈,且NEPE推进剂在空气中燃烧时比氮气中更加剧烈。NEPE推进剂的点火延迟时间随着环境压强的增大而减小,当环境压强从0.1 MPa增大到3.0 MPa时,氮气中的点火延迟时间由0.51 s减小到0.29 s,而空气中的点火延迟时间由0.32 s减小到0.18 s,但是当环境压强大于0.5 MPa时,环境压强对点火延迟时间的影响显著降低。同时环境压强会影响NEPE推进剂的燃烧速率,当环境压强从0.1 MPa增加到3.0 MPa时,氮气中的燃速从1.71 mm·s-1提高到4.54 mm·s-1,空气中的燃速从2.51 mm·s-1提高到11.4 mm·s-1,NEPE推进剂在空气中的燃烧速率增长幅度更大。最后通过燃速经验公式进行拟合,表明Vielle燃速公式更适用于表征NEPE推进剂在0.1~3.0 MPa下的燃速特性。  相似文献   

5.
硝酸羟胺(HAN)基推进剂具有能量高、安全钝感和燃烧产物绿色无毒等优点,在推进系统连续启动和推力调节等操作方面具有一定优势。综述了HAN基液体推进剂、HAN基凝胶推进剂和HAN基固体推进剂的配方组成、分解特性、点火燃烧性能及相关的应用技术状况。提出了今后的研究重点:制备HAN基液体推进剂用高性能催化剂床,同时发展电点火为可靠点火方式;改善HAN基凝胶推进剂点火性能,加快工程化应用;探究HAN基固体推进剂燃熄可控机理,突破大规模推进系统应用瓶颈。  相似文献   

6.
设计并制备了含N?脒基脲二硝酰胺盐(GUDN)和二硝酰胺铵(ADN)的硝酸酯增塑聚醚( NEPE)固体推进剂样品,测试了推进剂的燃烧性能(燃速和压强指数)、燃烧火焰结构和燃烧波温度分布,并与不含GUDN和ADN的推进剂性能进行对比。结果表明,GUDN/ADN 双氧化剂对NEPE推进剂的燃烧性能有明显的影响,推进剂配方中添加ADN可提高推进剂的燃速和压强指数,含15%、20%和22.5%的ADN替换高氯酸铵(AP)可使推进剂在7.0MPa 下的燃速提高25.30%、36.76%和47.69%,GUDN使推进剂在7.0MPa下的燃速降低18.97% ,而压强指数在1~15MPa提高12.04%,而且在不同压力下含双氧化剂的NEPE推进剂的燃烧火焰结构呈多火焰结构,而且火焰的亮度随着压强的增大而变亮。  相似文献   

7.
设计并制备了含N?脒基脲二硝酰胺盐(GUDN)和二硝酰胺铵(ADN)的硝酸酯增塑聚醚(NEPE)固体推进剂样品,测试了推进剂的燃烧性能(燃速和压强指数)、燃烧火焰结构和燃烧波温度分布,并与不含GUDN和ADN的推进剂性能进行对比。结果表明,GUDN/ADN双氧化剂对NEPE推进剂的燃烧性能有明显的影响,推进剂配方中添加ADN可提高推进剂的燃速和压强指数,含15%、20%和22.5%的ADN替换高氯酸铵(AP)可使推进剂在7.0MPa下的燃速提高25.30%、36.76%和47.69%,GUDN使推进剂在7.0 MPa下的燃速降低18.97%,而压强指数在1~15 MPa提高12.04%,而且在不同压力下含双氧化剂的NEPE推进剂的燃烧火焰结构呈多火焰结构,而且火焰的亮度随着压强的增大而变亮。  相似文献   

8.
HAN基电控固体推进剂的热分解和电导率特性   总被引:1,自引:0,他引:1  
为了揭示硝酸羟胺(HAN)基电控固体推进剂(ECSP)可靠点火和燃烧调控机理,采用热重-差示扫描量热-质谱(TG-DSC-MS)联用技术和阻抗-频率扫描方法分别研究了ECSP的热分解行为、热分解产物以及压力与温度对电导率的影响。结果表明:与纯HAN溶液相比,ECSP的热稳定性提高,初始分解温度提高11℃,高温放热峰峰温后移24℃,热分解历程变长。结合ECSP的热分解行为与产物质谱曲线,发现HAN基ECSP的热分解历程主要分为三步:HAN发生热分解反应;HAN的热分解产物和未分解的HAN与聚乙烯醇(PVA)发生相互作用;ECSP中剩余其他组分发生热分解。ECSP的电导率在低频率范围(0~1000 Hz)内急剧增加,但随着频率的增加,在高频率范围(大于1000 Hz)内趋于恒定。随着压强和温度的增加,ECSP的电导率增加。当温度增加到150℃时,ECSP在高频率范围的电导率与125℃时相比降低2.92%。  相似文献   

9.
为了研究光控固体推进剂在激光辐照下的可控燃烧特性以及推力性能,采用高速摄影、高精度压力传感器、R型热电偶以及微推力测试平台等装置分别获取了不同激光功率密度下,光控固体推进剂的燃速、点火延迟时间、燃烧室压强、燃烧火焰温度以及微推力等性能参数.结果表明:光控固体推进剂的燃速与燃烧室压强均随激光功率密度的增加而线性升高,与之相反,其点火延迟时间随激光功率密度的增加呈下降趋势.结合热电偶测温曲线,发现光控固体推进剂的燃烧过程主要分为五个区域:预热区、凝聚相区、三相区、气相区以及火焰区,与此同时,在1.343 W·mm-2的激光功率密度下,推进剂的燃烧火焰温度为1202.3℃.光控固体推进剂燃烧状态对于激光功率密度的依赖性对于实现推力的精确控制具有重要意义,通过改变激光功率密度的大小,成功实现了光控固体推进剂的推力控制;随着激光功率密度由0.344 W·mm-2增加到1.343 W·mm-2,光控固体推进剂的推力由1.58 mN上升至2.28 mN.  相似文献   

10.
奥克托今(HMX)作为含能材料在能够提高推进剂能量性能的同时可改变推进剂的燃烧过程,广泛用于固体推进剂中。为了研究HMX含量对推进剂点火、燃烧、团聚和凝聚相燃烧产物特性的影响,采用推进剂燃面拍摄、激光点火以及凝聚相燃烧产物收集方法对HMX含量在0%~10%范围内的典型四组元推进剂进行试验研究。结果表明:随着HMX含量由0%增加到10%,推进剂的点火延迟时间由191 ms增加到286 ms,推进剂的燃速和压强指数均减小,凝聚相燃烧产物的体积平均粒径D43由48.1μm增加到138.3μm。含10%HMX的推进剂燃面上铝的团聚程度最大,而含8%HMX的推进剂凝聚相燃烧产物中活性铝的含量最高。  相似文献   

11.
研究了HTPB/AP富燃复合固体推进剂在0.1~1 MPa下的燃烧特性。结果表明,高压、高AP浓度和较小的AP粒子尺寸能促进稳定燃烧,提高燃速和燃烧效率,降低点火温度。亚铬酸铜(CC)作为增速剂能提高整个压力范围内的燃速,6%CC可降低推进剂点火温度16%,燃烧效率可达96%,而未添加CC的推进剂配方燃烧效率仅为31%~73%。研究表明,在极低的压力下Vieille燃速公式对此系列推进剂仍然适用。  相似文献   

12.
不同环境压强下炭黑含量对聚乙烯点火和燃烧性能的影响   总被引:1,自引:0,他引:1  
杨海涛  陈雄  相恒升  巩伦昆  黄波 《含能材料》2017,25(12):976-982
为了获得炭黑质量分数和环境压强对固体燃料聚乙烯点火和燃烧性能的影响,加工了不同组分配比的固体燃料样品。以CO2激光器作为点火源研究了它们的点火和燃烧特性。用高速摄影仪记录实验过程。用扫描电子显微镜观测了燃烧后的固体燃料表面形貌。分析了不同环境压强下不同组分配比固体燃料的点火燃烧过程、点火延迟时间和燃速。结果表明,固体燃料聚乙烯的点火过程为典型的气相点火,燃烧火焰属扩散火焰。点火延迟时间随着炭黑的加入急剧缩短,当炭黑质量分数大于20%时,炭黑质量分数的增加对点火延迟时间的影响很小。点火延迟时间随着环境压强的增加缩短,当环境压强大于0.2MPa时,环境压强的增加对点火延迟时间的影响也很小。根据实验结果,采用最小二乘法,拟合得到了环境压强为0.1,0.2,0.3,0.4,0.5MPa时点火延迟时间与炭黑质量分数的函数关系式。固体燃料的燃速随炭黑质量分数的增大而减小,随压强的增大而增大,当炭黑质量分数大于5%时,炭黑质量分数是影响固体燃料燃速的主要因素。  相似文献   

13.
在0.1MPa到1MPa的低压范围内,实验研究了一系列特定的HTPB/AP富燃复合固体推进剂的燃烧特性。研究表明:高压、高AP浓度和较小的AP粒子尺寸能促进稳定燃烧,提高燃速和燃烧效率,降低点火温度。加入亚铬酸铜(CC)作为增速剂能提高整个压力范围内的燃速,加入6%CC可降低推进剂点火温度16%,燃烧效率可达96%,而没有添加CC的推进剂配方燃烧效率为31%~73%。研究表明,在极低的压力下Vieille燃速公式对此系列推进剂仍然适用。  相似文献   

14.
宋洪昌  王祎  白华萍 《含能材料》2004,12(Z1):390-395
在原有的RDX-CMDB推进剂稳态燃烧化学--数学模型基础上,通过对铝粉燃烧机理的研究及大量燃速数据的分析,采用归纳因子的方法寻求铝粉的含量和粒度对燃速的影响因子,建立了Al-RDX-CMDB推进剂燃速计算公式.运用该公式可从化学结构出发,计算Al-RDX-CMDB推进剂的燃速和压强指数.通过实际计算表明,理论燃速值与实测值十分一致.由此讨论了影响平台推进剂燃速与燃速压强指数的化学结构因素.  相似文献   

15.
浅谈固体推进剂燃烧催化剂的评判标准   总被引:1,自引:1,他引:0  
严启龙 《含能材料》2019,27(4):266-269
<正>1燃烧催化剂的技术内涵固体推进剂的燃烧性能调节是实现其工程化应用的必要途径。燃烧催化剂作为固体推进剂的核心功能组分,可在调节固体推进剂燃速,控制能量释放和羽流特征信号等方面起重要作用。目前,对固体推进剂燃烧催化剂的研究主要包括四方面:一是设计制备新型多功能燃烧催化材料并表征其结构和稳定性;二是评估新型催化剂与推进剂组分的相容性和安定性;三是分析燃烧催化剂对推进剂主要组分的催化热分解动力学及机理;四是探讨催化条件下固体推进剂的燃速压力指数、火焰结构与燃烧波温度的变化规律(Q L Yan,F  相似文献   

16.
为了探究含Al的高氯酸盐基电控固体推进剂(ECSP)的感度特性,采用浇注工艺制备了金属与非金属系高氯酸基ECSP,并依据国军标方法考察了Al含量(0%,5%,10%,15%,20%)及粒径(0.05,5,25,65,105μm)对高氯酸盐基ECSP的撞击感度、摩擦感度、静电火花感度及火焰感度的影响。结果表明:高氯酸盐基ECSP的撞击感度随Al含量的增加而增大,随Al粒径的增大而减小;金属与非金属系高氯酸盐基ECSP的摩擦感度均较低,Al含量及粒径变化对其摩擦感度有一定的影响,但影响较小;高氯酸盐基ECSP的火焰感度随Al粒径的增加而降低;在10 kV电压下Al含量及粒径的变化均未导致高氯酸盐基ECSP出现明显的发火现象;含纳米级Al高氯酸盐基ECSP的撞击感度(H_(50)=33.9 cm)高于含微米级Al高氯酸盐基ECSP(H_(50)≥56.2 cm)。  相似文献   

17.
铝粉粒度对含铝推进剂燃烧特性的影响   总被引:12,自引:3,他引:12  
研究了铝粉粒度对焦点铝推进剂铝粉凝聚行为和燃烧速度的影响,实验和理论分析表明:增在铝粉粒度有利于减小铝粉凝聚程度,而小粒度的铝粉可以改善其点火与燃烧特性。另外,由于铝粉粒度对推进剂燃面的热效应影响,在低燃速推进剂中随铝粉粒度增大燃速降低;在高燃速推进剂中随铝粉粒度增大燃速升高;所以,合理使用铝粉粒度对研制固体推进剂主是至关重要的  相似文献   

18.
在原有的RDX-CMDB推进剂稳态燃烧化学——数学模型基础上,通过对铝粉燃烧机理的研究及大量燃速数据的分析,采用归纳因子的方法寻求铝粉的含量和粒度对燃速的影响因子,建立了AI-RDX-CMDB推进剂燃速计算公式。运用该公式可从化学结构出发,计算AI-RDX-CMDB推进剂的燃速和压强指数。通过实际计算表明,理论燃速值与实测值十分一致。由此讨论了影响平台推进剂燃速与燃速压强指数的化学结构因素。  相似文献   

19.
通过分析三羟甲基乙烷三硝酸酯(TMETN)热分解特性,确定了TMETN的化学结构参数,模拟了含TMETN的钝感低特征信号推进剂的燃速和压强指数数据,阐明了TMETN对此类推进剂燃烧性能的影响规律,论述了某种有机钾盐消焰剂(KD)对此类推进剂燃速的作用效果。数值模拟结果显示,理论计算值与实测值吻合的很好;含TMETN的钝感低特征信号推进剂燃速随TMETN含量增加而降低,其压强指数增加;KD可提高此类推进剂的燃速,并可辅助“铅-铜-炭”复合燃烧催化剂增强此类推进剂的平台作用效果。  相似文献   

20.
铝粉形态对低燃速丁羟推进剂燃烧性能的影响   总被引:1,自引:1,他引:0  
焦继革  周克  张炜 《含能材料》2000,8(2):72-74
通过静态燃烧性能测试及φ112nm发动机动态评定等实验方法,研究了球形铝粉及非球形铝粉对低燃速丁羟推进剂燃烧性能的影响。结果发现,含球形铝粉推进剂的燃速和燃速压强指数略高于含非球形铝粉的推进剂,而且其燃速可通过调节氧化剂的粒度级配来改变,而燃速温度敏感系数没有显著变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号