首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
目的 研究紧固件用冷拔态GH4738合金棒材在不同工艺参数下的热变形行为,为紧固件热加工工艺参数优化提供理论指导。方法 采用Gleeble-3500热模拟实验机对冷拔态GH4738合金棒材在变形温度1 000~1 080 ℃、应变速率1~10 s−1条件下进行了热压缩实验,变形量为50%。计算了该合金的材料常数和变形激活能Q,建立了基于峰值应力的冷拔态GH4738合金的本构方程,根据动态材料模型理论绘制了冷拔态GH4738合金的能量耗散图和失稳图,获得了合金在不同应变下的热加工图,并讨论了显微组织演变情况。结果 冷拔态GH4738合金的流变应力随着变形温度的增加或应变速率的减小而降低。线性回归的相关系数证实了描述该材料热变形行为的本构方程的准确性。基于冷拔态GH4738合金的热加工图及显微组织验证结果可得,冷拔态GH4738合金的主要失稳区工艺参数区间为1 000~1 035℃/0.12~3 s−1,1 030~1 072℃/ 0.25~10 s−1和1 075~1 080 ℃/2.72~10 s−1。热加工较佳工艺条件为1 000~1 028 ℃/0.02~0.14 s−1和1 040~1 080 ℃/ 0.06~0.74 s−1。结论 通过对冷拔态GH4738合金热变形本构方程和热加工图进行研究,获得了冷拔态GH4738合金优化的热变形工艺参数,可用于指导冷拔态GH4738合金的紧固件热加工成形。  相似文献   

2.
目的 研究2195铝锂合金在实验温度360~510 ℃、应变速率0.01~10 s−1条件下的热压缩变形行为,建立其本构模型及热加工图,获取该合金的安全加工工艺参数。方法 采用Gleeble−3500热模拟试验机进行热变形实验,分析合金的流变行为及热加工图,结合微观组织阐述其热变形机理,并对所得最优参数进行热挤压实验验证。结果 2195铝锂合金的流变应力随变形温度增加而减小,随应变速率增加而增加;其热激活能Q为203.643 9 kJ/mol、结构因子A为1.943 9×1014、应力因子α为0.013、应变硬化指数n为5.883 9。确定合金的主要失稳区工艺参数区间为379~420 ℃、0.75~10 s–1和480~510 ℃、1~10 s−1,安全加工区间为440~510 ℃、0.01~0.25 s−1。铸态2195铝锂合金的屈服和抗拉强度分别仅为(179±6)MPa和(239±11)MPa,经热挤压实验后分别达到(605±6)、(633±3)MPa,分别提高了3.5和2.6倍;铸态合金的显微硬度仅为(115±1)HV,热加工后型材达到(178±4)HV,相较于铸态合金增加了54%。结论 2195铝锂合金的流变行为符合正应变速率敏感特征,其安全加工区域集中在高温低应变速率区,主要发生了动态再结晶,实验型材在此区域表现出卓越的力学性能。  相似文献   

3.
目的 研究工业纯钛TA2在变形温度为800~950 ℃、应变速率为0.001~1 s?1、压下量为50%条件下的热压缩变形行为,构建材料高温本构方程及热加工图。方法 利用Gleeble–3500热模拟试验机进行热压缩试验,对实测流变曲线进行摩擦修正,通过线性回归拟合等方法建立本构方程,基于动态材料模型构建工业纯钛TA2热加工图,确定材料最佳热变形区域。结果 工业纯钛TA2热变形激活能Q为473.491 kJ/mol,应力指数n为3.876 6;最佳热变形参数为变形温度850~950 ℃、应变速率0.02~0.35 s?1。结论 工业纯钛TA2摩擦修正后的流变应力值均低于实测值,流动应力随变形温度的升高和应变速率的减小而降低。所建立的Arrhenius本构模型可较为准确地描述工业纯钛高温流变行为。工业纯钛TA2在中高温中等应变速率条件下加工性能良好,该区域材料发生了动态再结晶组织转变。  相似文献   

4.
目的 研究铸态合金Mg?2Sc?2Y?0.5Zr合金热压缩行为及热加工图,根据合金的用途和再结晶程度,确定最佳热加工艺参数,为合金后续变形提供参考。方法 通过实验设计合金成分,称取一定质量的纯镁锭和二元中间合金,在真空熔炼炉中加热至760 ℃,保温至熔化,搅拌,静止,然后在钢磨具中空冷,得到合金锭。实际成分通过电感耦合等离子体原子发射光谱法测定;切取合适大小的铸锭进行X射线衍射实验。用于热压缩的铸态样品为圆柱形试样(?10 mm×15 mm) ,在进行热压缩实验前,对所有样品表面进行抛光。使用Gleeble?3800热压缩模拟试验机对铸态Mg?2Sc?2Y?0.5Zr合金进行热压缩试验,变形温度为573~723 K,应变速率为0.001~1 s?1。经热压缩后将各试样立即进行水淬,以保持压缩变形组织。将压缩样品沿着纵轴切割压缩样品,然后抛光、蚀刻,并使用扫描显微镜进行检查,以观察微观结构的演变,计算该合金的变形激活能,并构建合金高温变形的本构方程,建立真应变为0.5时的热加工图。结果 得到了铸态Mg?2Sc?2Y?0.5Zr合金热变形本构方程及真应变为0.5时的热加工图,合金热变形发生了动态回复和动态再结晶,合金的热变形激活能Q为198.58 kJ/mol。结论 根据用途和再结晶程度,铸态Mg?2Sc?2Y?0.5Zr合金的最佳加工参数为变形温度623~673 K、应变速率0.001~0.01 s?1,以及变形温度723 K、应变速率0.001~1 s?1。  相似文献   

5.
目的 研究铸态30CrMnSiNi2A钢的热变形行为,并建立热加工图评估出合适的热变形参数。方法 在变形温度900~1 200 ℃和应变速率0.01~10 s1条件下开展热压缩实验,分别构建应变0.2、0.4、0.6、0.8下的热加工图,结合扫描电镜对变形后的微观组织进行分析。结果 30CrMnSiNi2A钢在压缩过程中真应力的变化是加工硬化和动态软化协同作用的结果;在低应变速率时(0.01、0.1 s1),流动曲线在应力值达到峰值应力(σp)后都表现出流动软化现象,而在高应变速率下流动曲线则表现出连续的加工硬化现象。结论 根据变形试样的微观组织和塑性流动是否稳定,可将热加工图分为3个区:流动失稳区、不完全动态再结晶区、完全动态再结晶区,在完全动态再结晶区内的晶粒细小均匀,所以将变形温度1 100~1 180 ℃、应变速率0.01~0.5 s1确定为适合于30CrMnSiNi2A钢的加工窗口。  相似文献   

6.
目的 研究不同热变形参数下Ti-6554合金对应变速率敏感指数m、应变硬化指数n的影响。方法 采用Gleeble-3500热模拟实验机,在变形温度为810~930 ℃、应变速率为0.001~10 s−1条件下,对Ti-6554合金进行等温恒应变速率热压缩实验。结果 应变速率敏感指数m随应变速率的升高和变形温度的降低而减小,当真应变为0.9时,m在变形温度为930 ℃、应变速率为0.001 s−1的条件下达到峰值,为0.43。应变硬化指数n随应变速率的升高呈先升高后降低的趋势,在高温区间(870~930 ℃)的软化程度较大。结论 Ti-6554合金对变形温度、应变速率等热变形参数十分敏感,该合金的流动应力随着应变速率的升高和变形温度的降低而增大。分析微观组织可知,从应变速率敏感指数m角度考虑,该合金发生软化行为的最佳区域是变形温度为870~930 ℃、应变速率为0.001 s−1。从应变硬化指数n的角度考虑,在变形温度为870~930 ℃条件下,Ti-6554合金在低应变速率区间(0.001~0.01 s−1)的软化行为以动态再结晶(DRX)为主,在高应变速率区间(0.1~10 s−1)的软化行为以动态回复(DRV)为主。  相似文献   

7.
目的 建立Mg-8.5Gd-4.5Y-0.7Zn-0.4Zr合金的本构方程和加工图,得到材料的可加工变形参数。方法 采用Gleeble实验机开展温度范围为300~500 ℃,应变速率范围为0.001~1 s–1的高温单轴压缩实验。结果 流变应力随应变速率的升高和变形温度的降低而增加,当在变形温度为300 ℃,变形速率为0.1 s–1和1 s–1变形时,试样发生了早期开裂;计算得到了合金的变形激活能为228.414 kJ/mol,较高的活化能与LPSO相的存在有关;合金加工图中存在两个可加工区域,第一个区域在变形温度为350~420 ℃,应变速率为0.001~ 0.01 s–1的范围内,第二个区域在变形温度为420~480 ℃,应变速率为0.005~0.1 s–1的范围内。结论 建立的本构方程得到预测流动应力值与实验值吻合良好,加工图中两个可加工区域的变形机制都为动态再结晶。  相似文献   

8.
目的 优化2209双相不锈钢热加工区间,提升其高温变形稳定性。方法 在Gleeble–3800热模拟机上开展压缩实验,分析不同温度(950~1 150 ℃)和应变速率(0.01~10 s?1)下的应力–应变曲线特征,构建基于Arrhenius的双曲正弦本构模型,综合分析热加工图和变形微观组织演变特征。结果 流变应力随变形温度的降低和应变速率的增大而增大;在失稳条件下(950 ℃/0.01 s?1),奥氏体相所受应变能较小,只有一部分奥氏体晶粒发生了变形;温度升高(1 100 ℃/0.01 s?1)后,奥氏体相仍为等轴状晶粒,铁素体相承担塑性变形,此时表现为明显的应变分布不均匀现象;随着应变速率升高到稳定条件(1 100 ℃/1 s?1),奥氏体相承受了更大的塑性变形,且在压缩方向应力的作用下呈现条带状分布,同时发生了γ→δ的转变,这有利于提高钢的热塑性。结论 获得了2209双相不锈钢最佳加工区域(1 070~1 130 ℃、1~7 s?1),该区域功率耗散系数较大且变化梯度较小,材料热加工性能稳定。  相似文献   

9.
目的 通过热模拟实验研究挤压态Mg-8.5Gd-4.5Y-0.7Zn-0.4Zr合金的本构方程及加工图.方法 在Gleeble热模拟机上开展应变速率为0.001~1 s?1,变形温度为300~450℃条件下的单轴热压缩实验.根据动态材料模型,建立合金的热加工图,分析功率耗散因子随变形温度、应变速率和应变的变化规律.结果 合金的流变应力在不同的变形温度和应变速率下表现出不同的特征,流变应力与变形温度和应变速率的关系可用双曲正弦本构关系来描述,其平均激活能为209.223 kJ/mol,应力指数为3.442.合金的失稳区出现在变形温度为420~450℃,应变速率为0.1~1 s?1的范围内.结论 得到了挤压态合金的本构方程,合金最佳热加工工艺参数为变形温度为400℃,应变速率为1 s?1.  相似文献   

10.
目的 研究新一代飞机用TC1钛合金板材在不同温度和应变速率下的热塑性变形行为,进行热变形本构建模,构建热加工图。方法 在Gleeble-3500热模拟试验机上开展TC1钛合金板材在温度为500~650 ℃、应变速率为0.01~0.000 1 s?1条件下的等温恒应变速率单向拉伸试验,利用应变补偿的双曲正弦模型进行热变形本构拟合,绘制热加工图。结果 在同一温度下,TC1钛合金的流动应力随应变速率的减小而降低,但伸长率增加,最大断裂应变增大;变形温度在500 ℃时,加工硬化占据主导地位,随着温度升高至550、600、650 ℃,硬化阶段变短,应力达到峰值后很快下降,发生软化,此时热软化占主要地位。结论 建立的应变补偿的双曲正弦本构模型能够有效描述TC1钛合金板材在不同温度和应变速率条件下的热塑性变形行为;根据建立的TC1钛合金板材热加工图,可以确定其热加工工艺窗口为600~650 ℃、0.000 1~0.001 s?1,为TC1钛合金板的热加工提供科学指导。  相似文献   

11.
Sc2O3-Y2O3-ZrO2陶瓷材料热物理性能   总被引:1,自引:0,他引:1  
曹书光  郭文荣  谢敏  宋希文 《材料导报》2016,30(8):69-71, 83
采用固相合成法制备了6.3%Sc_2O_3-1.3%Y2O3-92.4%ZrO_2(摩尔分数)陶瓷材料。分别利用X射线衍射、示差扫描量热法、高温热膨胀仪和激光导热法对陶瓷材料的物相组成、高温相稳定性、热膨胀系数和热扩散等性能进行了表征。结果表明,经1600℃烧结6h,该陶瓷材料由单一的立方相结构组成,具有良好的高温相稳定性,热导率低于传统的6~8YSZ,是一种良好的热障涂层候选材料。  相似文献   

12.
The thermal conductivity coefficient in the temperature range from 275 to 450 K and the coefficient of thermal expansion in the range from 300 to 900 K are experimentally determined for solid solutions of the CaLa2S4-La2S3 system. The mechanisms of heat transfer in CaLa2S4- La2S3 samples in the investigated temperature range are discussed, as well as the factors which define the complex concentration dependence of thermal conductivity coefficient. The correlation is treated between the value and temperature dependence of the coefficient of thermal expansion and the variation of the interatomic bond force in the case of variation of the concentration of cation vacancies in the investigated crystals.  相似文献   

13.
掺杂纳米CeO2对ZrO2-Y2O3热障涂层隔热性能的影响   总被引:1,自引:0,他引:1  
以纳米ZrO2-8 wt%Y2O3(YSZ)和在纳米ZrO2-8wt%Y2O3中分别掺杂25wt%和50wt%纳米CeO2团聚处理后作为隔热层材料,NiCrAlY(Ni-25Cr-5Al-0.5Y,wt %)作为粘结层材料,用等离子喷涂(APS)方法在GH30高温合金表面制备三种材料体系的热障涂层(TBC) 。通过扫描电镜(SEM)和X射线衍射仪(XRD)对掺杂了25wt%纳米CeO2涂层的微观组织结构进行分析研究,测定了三种材料涂层在室温和 300、500、700℃时的热导率,并在相同边界条件下测试了它们的隔热性能。结果表明:掺杂纳米CeO2涂层组成相为稳定的t相(t-ZrO2、t-Zr0.82Y0.18O1.91、t-Zr0.82Ce0.18O2)和c相(c-CeO2) , 涂层中存在闭合的孔隙和微裂纹;掺杂纳米CeO2能够降低涂层的热导率,并且隔热性能随CeO2含量的增加而提高。对于 400μm厚的CeO2/ZrO2-Y2O3涂层(CYZ , 掺杂25wt%CeO2)对基体产生的温降比纳米YSZ涂层提高了10.7%,当CeO2的含量从25wt%提高到50wt%时,隔热性能也提高了7.1%。  相似文献   

14.
Al2TiO5-ZrO2复相材料的制备与性能   总被引:1,自引:0,他引:1  
以α-Al2O3,TiO2,ZrO2为主要原料,以MgO,SiO2,Fe2O3为稳定剂,经1500℃×2h烧结可制得低热膨胀系数的Al2TiO5-ZrO2复相材料.实验发现:随试样中ZrO2含量的提高或随ZrO2稳定程度的提高,Al2TiO5-ZrO2材料的RT~1000℃热膨胀系数逐步降低,这与材料复合体热膨胀系数的常规相悖.ATZ-5试样的抗弯强度为39.15MPa,吸水率为3.28%,热膨胀系数为4.46×10-6 /℃,其抗热震性能优良,可承受的热震温差是P-ZrO2试样的1.62倍.  相似文献   

15.
Mg对La2Ce2O7的掺杂可提高其热膨胀系数、降低其热导率, 从而改善其作为热障涂层材料的性能。采用溶胶-凝胶法制备了(La1-xMgx)2Ce2O7-x系列组成样品。X射线测试表明: 当 0≤x≤0.4时, 所有(La1-xMgx)2Ce2O7-x 样品均与La2Ce2O7具有相同的缺陷萤石结构, 且晶胞参数随x的增大而递减; 当x?0.4时, 样品中出现MgO的峰。在组成相同的情况下, 样品(La1-xMgx)2Ce2O7-x (0≤x≤0.4)的热膨胀系数随温度升高而增大, 而热导率随温度升高而降低。在相同温度下, 不同组成样品(La1-xMgx)2Ce2O7-x (0≤x≤0.4)的热膨胀系数随x的增大而增大; 而样品的热导率则随Mg掺杂量的增加呈先增大后减小的趋势。在此基础上, 探讨了Mg掺杂对La2Ce2O7的物相、晶胞参数、热膨胀系数以及热导率的影响机理。  相似文献   

16.
应用湿化学法和低分子有机溶剂分散合成了复合磷酸锆锶钾KxSr(1-x)/2Zr2(PO4)3(x=0,0.25,0.5,0.75,1.0)(简写 KSZP)陶瓷粉体,制备了相应的陶瓷.研究了组成、添加剂种类、烧结条件对热膨胀异向性及热膨胀系数的影响,实现了用两种组成的互溶来消除热膨胀的异向性.当x=0.5时,热膨胀异向性最小且热膨胀系数α接近于零即获得了零膨胀的材料性能.  相似文献   

17.
This paper reports on the measurement of the specific heat of Wakefield thermal compound from 2 – 40 K  相似文献   

18.
张礼华  张云升  殷倩文 《材料导报》2018,32(12):1955-1958
通过高温熔融法制备了不同Li_2O/K_2O物质的量比的磷酸盐玻璃,研究了其热学性能和热光性能。采用干涉仪法测试了玻璃的折射率温度系数dn/dT,并进一步计算获得了热光系数。结果表明:随着Li_2O/K_2O物质的量比的增大,玻璃的转变温度Tg、软化温度Tf、热膨胀系数α皆出现极值点,呈现明显的混合碱效应;而玻璃的热光系数dS/dT随着Li_2O含量增加而增大,当Li_2O/K_2O物质的量比为9∶6时,玻璃的dS/dT为0.08×10~(-6)/K;在磷酸盐体系中可获得具有零热畸变的光学玻璃。  相似文献   

19.
用固相反应法制备(Gd1-xErx)2(Zr0.8Ti0.2)2O7(摩尔分数x=0,0.2,0.4)陶瓷并测试其晶体结构、显微形貌和物理性能,研究了Er2O3掺杂的影响。结果表明,(Gd1-xErx)2(Zr0.8Ti0.2)2O7陶瓷具有立方烧绿石结构,显微结构致密,在室温至1200℃高温相的稳定性良好;Er3+掺杂降低了陶瓷材料的热导率和平均热膨胀系数,当x=0.2时,其1000℃的热导率最低(为1.26 W·m-1·k-1)。同时,Er3+掺杂还提高了这种材料的硬度和断裂韧性。  相似文献   

20.
重点研究了PbBr-PbCl-PbF-PbO-P系统玻璃的热性质、耐水性和抗潮解性.结果表明:该系统玻璃的热膨胀系数较大,一般在 25×10-6°C-1左右. PbBr-PbCl-P系统的玻璃具有较低的玻璃转变温度,可低达 146℃.加入 PbF和/或 PbO可显著提高玻璃的转变温度和密度,其中 PbO对试样的影响更为显著. PbBr-PbCl-PbF-PbO-P系统玻璃的抗潮解性一般较好。多数玻璃在水中的溶解速率可达10-5mm/day,具有较好的耐水性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号