首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水泵水轮机在水轮机工况运行时易进入反S不稳定区,影响机组的安全稳定运行。传统压差法在计算水力损失时不能获得损失的具体分布和详细来源,因此水泵水轮机在反S区水力损失机理仍有待深入研究。本文采用雷诺时均方法对某原型抽蓄电站水泵水轮机在活动导叶开度分别为12°和35°下的反S区运行工况进行了数值模拟,基于熵产理论对各个过流部件和不同类型的水力损失进行了定量分析,并结合流场分布情况进一步明确了水力损失的分布特点和产生原因。结果表明,水泵水轮机进入反S区会引起导叶段水力损失占总水力损失的比例逐渐增大,而转轮段水力损失逐渐减小。在不同类型的能量损失中,湍流熵产占据主导,壁面熵产次之,直接熵产最小。随着水泵水轮机进入深度反S区,转轮区湍流熵产损失较大区域从转轮进口的叶片压力面转移到转轮出口叶片吸力面。水泵水轮机位于反S区时,转轮对水流做功输入能量,使无叶区总压大幅上升,活动导叶开度增大会显著增大无叶区水流能量幅值。  相似文献   

2.
为了研究竖井贯流泵流动损失特性,基于URANS方法,采用FBM-CC湍流模型对竖井贯流泵内部流场进行了非定常计算,并利用熵产理论对不同流量工况下竖井贯流泵各部件的流动损失特性进行了定量分析。结果表明:FBM-CC湍流模型能够有效预测竖井贯流泵水力性能,与试验结果较为吻合;竖井贯流泵流动损失从大到小依次为叶轮段、出水流道、导叶体、进水流道;叶轮段能量损失的主要来源是湍流耗散,其熵产比率最高可达92%;涡流和流动分离导致出现局部高熵产区域;临界失速工况叶轮轮毂处存在大量涡流,轮缘处流动相对较稳定;深度失速工况受叶顶间隙泄漏流影响,叶轮进口轮缘处出现流动分离,随着流量进一步减小进水流道流态受到影响,叶片前缘出现分离涡。  相似文献   

3.
4.
为了研究水泵水轮机部分负荷工况尾水管涡带产生的原因和压力脉动特性,本文以模型水泵水轮机为研究对象,对内部流动进行了全流道三维数值模拟并采用熵产理论进行了分析。计算结果分析表明:数值模拟与实验值吻合较好;固定导叶和蜗壳内的总熵产很小,而转轮和尾水管内较大,在小流量工况叶片压力面产生的流动分离会导致高熵产率分布区域的出现,并且会随着流量的进一步减小而扩大;在部分负荷出现了粗壮型和纤细形两种涡带,均呈现螺旋形,涡带的形成与叶片出口环量偏离零环量有很大关系;涡带的出现会在尾水管内形成漩涡,阻塞尾水管通道,涡带跟随转轮同方向旋转,但是转速更低,因此尾水管出现幅值较大的低频压力脉动。  相似文献   

5.
水轮机引水部件的水力损失模型   总被引:2,自引:0,他引:2  
本文建立了水轮机引水部件的水力损失模型,并用该模型对两算例进行了损失计算,计算结果表明:该模型能反应出引水部件水力损失的变化趋势,新提出了蜗壳水力损失模型更切合实际,可用于水轮机引水部件的水力优化。  相似文献   

6.
详细介绍了水轮机/水泵水轮机水力性能现场验收试验方法,较具体的介绍了功率、水头、流量、热力学等测量方法及测量误差,可作为编制现场验收试验计划的参考。  相似文献   

7.
王李科  姚亮  冯建军  朱国俊  卢金玲  阮辉 《水利学报》2024,55(3):344-354,366
为了调节电网的稳定性,抽水蓄能电站需要频繁启停和变换工况运行,导致水泵水轮机容易进入S特性区,机组振动增加,并网失败。本文以模型水泵水轮机为研究对象,采用熵产理论详细分析了S特性区不同工况下的能量损失规律,明确了熵产率分布与内部流动结构的关系。结果表明:S特性区内近飞逸工况总熵产最大,约为设计工况的5.1倍,脉动熵产占据的比例接近80%,随着流量的减小,转轮熵产占比逐渐降低,活动导叶和尾水管的熵产占比增加。小流量工况转轮进口靠近下环位置首先出现了明显的漩涡,导致了活动导叶出口和转轮进口的高熵产区,随着流量进一步减小,漩涡逐渐向上冠转移,并且切向速度增大,在转轮进口形成挡水环,阻碍水流进入转轮,在无叶区内出现了环状分布的高熵产区。反水泵工况,水流在低压边与逆时针旋转的叶片撞击,导致水流很难进入叶片内部,形成了大尺度的回流涡结构;双列叶栅内充满大量涡结构,导致活动导叶吸力面的熵产率增大,并且向固定导叶传播。  相似文献   

8.
从水泵水轮机水力设计技术、水泵水轮机模型装置设计技术和水泵水轮机模型试验技术等几个方面介绍了东方电机在抽水蓄能电站水泵水轮机水力研究开发上的技术进步。  相似文献   

9.
针对活动导叶开度对水泵水轮机泵工况导叶区流场和模型性能的影响,在高精度模型通用试验台上对一低比转速模型水泵水轮机导叶区的流场运用粒子图像测速(PIV)系统进行了测量。测量结果显示,同一开度下随着流量减小,无叶区内的流速出现增大的趋势;同一流量随着开度的减小,导叶前流速明显增大,模型效率下降。模型试验在转轮无空化条件下进行,但在8 mm开度83%最优流量工况,由于流速高、冲角大,造成位于高压侧的导叶头部发生了明显的绕流空化现象,并引起了固定导叶流道宽频带的压力脉动。研究成果可为水泵水轮机的优化设计和安全稳定运行提供试验依据。  相似文献   

10.
《国际水力发电》1991,43(2):27-37,22
本文叙述新近研制的高水头两级水泵水轮机,提出了单级水泵水轮机的水头上限,描述了新机组的特性,井分析了它的水力和机械性能,同时对该机组与日立公司设计的水头为1450m的两级水泵水轮机作了比较。  相似文献   

11.
水泵水轮机流动可视化研究   总被引:2,自引:0,他引:2  
利用PIV流场测试技术,对低比速混流式模型水泵水轮机转轮在水轮机工况下进行了可视化研究,结果表明水泵水轮机模型在设计工况下转轮区的流态较好;在非设计工况下,不管正冲角还是负冲角,翼间流场都会有一定的脱流与旋涡存在。尤其在大流量工况下,在叶片正面形成的脱流漩涡,其位置几乎不变,机组运行比较稳定;在小流量工况下,存在着周期性的脱流漩涡,从进口附近逐渐变化到出口附近,机组运行不稳定。  相似文献   

12.
采用二元理论结合螺旋势流设计了混流式水泵水轮机,并利用Pro/ENGINEER建立三维几何模型。通过对不同曲率导叶的CFD数值模拟计算,分别得到水泵工况和水轮机工况下的流场流线图、速度图以及压力图,证实标准导叶更适用于混流可逆式机组。效率估算结果显示,机组效率在水轮机工况达到85%,水泵工况达到88%,说明设计方法可行。  相似文献   

13.
水轮机水力振动问题研究   总被引:1,自引:1,他引:0  
以水轮机过流部件的动水压力为切入点,根据振动理论和层流理论,对其振动模型和振动成因作了分析研究。并对宝鸡峡林家村水电站2#水轮机振动测量数据作了统计规律的分析,找出了该电站水轮机发生不允许振动"区间"和振动"源",得出了可供科学运行借鉴的参考意见。  相似文献   

14.
水力损失计算是泵装置性能预测的基础,文中给出了低扬程泵装置各过流部件水力损失计算公式,指出非设计工况下进水流道损失修正和出水流道环量损失的概念,有助于理解泵段性能与泵装置性能的差异。系统总结了基于性能预测和流动分析的低扬程泵装置水力设计流程,对南水北调泵站设计和建设具有一定的指导意义。  相似文献   

15.
水泵水轮机在泵工况部分负荷下运行,叶道内易发生旋转失速,可诱发剧烈的低频压力脉动,严重影响水电站的安全稳定运行。本文采用尺度自适应(SST-SAS)湍流模型对某模型水泵水轮机泵工况进行全流道非定常数值模拟,得到不同工况点下旋转失速引起的压力脉动特性及失速涡团的周向转动机理。结果显示,在40%~80%设计流量下运行时,导叶区发生旋转失速,失速涡团的转动频率为叶轮转频的3.3%~8.1%。旋转失速发展强度越剧烈,转动越慢。旋转失速周向转动的机理是:失速与非失速相邻导叶流道内存在较大压力梯度,在其作用下,失速流道内流体从活动导叶与固定导叶之间通道流向非失速流道,加剧非失速流道内流动分离。被阻碍的水流与无叶区主流叠加流向下一流道,并在活动导叶吸力面进口前缘产生局部低压,导致当前非失速活动导叶流道在进口与出口之间的逆压梯度增强,使流体反向流动,流道产生失速。  相似文献   

16.
为研究水泵水轮机在泵工况下的内部流态变化对压力脉动和转轮叶片受力的影响,采用SAS-SST湍流模型对某一模型水泵水轮机的多个非设计工况进行非定常数值模拟,分析了水轮机内部流态对导叶与转轮之间无叶区、尾水管内的压力脉动和转轮叶片径向受力的影响。结果表明:在流量为40%~80%设计流量时,导叶区内产生旋转失速,转失速涡团初生于固定导叶进口,并随着流量的降低向活动导叶进口发展,且覆盖区域逐渐增大。旋转失速使压力和过流沿周向不均匀分布,导致压力脉动和转轮径向受力波动大幅上升。在40%设计流量时,失速涡团发展最为充分,无叶区压力脉动和转轮受力波动的低频分量幅值最高。旋转失速产生的低频脉动可向尾水管传播,形成的低频压力脉动幅值约为无叶区低频脉动幅值的10%。当流量低于40%设计流量时,导叶区旋转失速消失,复杂的涡结构形成的压力脉动低频成分没有周期性。此外,转轮进口的流动分离使尾水管内产生复杂的回流涡结构,导致尾水管内形成频谱丰富的压力脉动;流量降低使转轮进口回流涡结构的湍动能增加,导致尾水管内压力脉动幅值大幅上升。小流量工况下,转轮进口的涡结构演变是转轮径向力波动的主要影响因素。  相似文献   

17.
为研究水泵水轮机在泵工况下的内部流态变化对压力脉动和转轮叶片受力的影响,采用 SAS-SST 湍流模型对某一模型水泵水轮机的多个非设计工况进行非定常数值模拟,分析了水轮机 内部流态对导叶与转轮之间无叶区、尾水管内的压力脉动和转轮叶片径向受力的影响。结果表明: 在流量为 40% ~80%设计流量时,导叶区内产生旋转失速,转失速涡团初生于固定导叶进口,并随着流量的降低向活动导叶进口发展,且覆盖区域逐渐增大。旋转失速使压力和过流沿周向不均匀分布, 导致压力脉动和转轮径向受力波动大幅上升。在40%设计流量时,失速涡团发展最为充分,无叶区 压力脉动和转轮受力波动的低频分量幅值最高。旋转失速产生的低频脉动可向尾水管传播,形成的低 频压力脉动幅值约为无叶区低频脉动幅值的10%。当流量低于 40%设计流量时,导叶区旋转失速消失,复杂的涡结构形成的压力脉动低频成分没有周期性。此外,转轮进口的流动分离使尾水管内产生复杂的回流涡结构,导致尾水管内形成频谱丰富的压力脉动; 流量降低使转轮进口回流涡结构的湍动 能增加,导致尾水管内压力脉动幅值大幅上升。小流量工况下,转轮进口的涡结构演变是转轮径向力波动的主要影响因素。  相似文献   

18.
以两个水泵水轮机模型转轮为研究对象,联合分析了单流道计算结果与模型试验结果,形成了不同转轮方案“驼峰”性能比较的CFD评判方法,对水力设计时“驼峰”性能的优化提供了理论指导,同时对转轮和活动导叶在压力系数“转折点”和“驼峰”谷点工况下进行了内部流态分析,对“驼峰”现象的产生原因有了更加深入的了解。结果表明:转轮对比时,压力系数“转折点”流量系数越小,模型试验得到的“驼峰”谷点流量系数越小,压力系数越高,“驼峰”裕度越大;活动导叶近顶盖区域的不稳定流动是单流道计算时压力系数曲线出现“转折点”的主要原因;转轮内部分流体从低压边近上冠侧向高压边近下环侧的流动导致活动导叶近底环区域产生复杂的紊流,严重堵塞了流道,导叶的过流能力下降,是水泵工况出现“驼峰”现象的内因。  相似文献   

19.
灯泡贯流泵流道模型水力损失的测试   总被引:1,自引:1,他引:1  
为了配合某大型泵站贯流泵装置的优化水力设计研究工作,本文提出了设计专用模型试验装置,将贯流泵装置进水流道和出水流道从水泵装置模型中分离出来分别进行模型试验及水力损失测试的方法。介绍了新方法所采用的测试装置及测试设备、试验准则、水力损失计算方法等有关问题。采用本文的方法对某泵站前置灯泡和后置灯泡贯流泵的进、出水流道分别进行了模型试验,测试了流道水力损失。试验结果表明:采用新方法进行贯流泵进出水流道水力损失的测试,可以较为方便地得到准确的结果;贯流泵装置进、出水流道的水力损失与灯泡布置的位置密切有关。  相似文献   

20.
叶轮直径对立式泵装置流道水力损失的影响   总被引:2,自引:1,他引:1  
采用数值计算的方法,分别计算了与不同叶轮直径的立式轴流泵配套使用的肘形进水流道和虹吸式出水流道在一定设计流量下的水力损失,并采用模型试验的方法对流道水力损失数值计算的结果进行了验证,得到了叶轮直径对流道水力损失具有显著影响的明确结论;在流道水力损失研究结果的基础上,为便于对具有不同叶轮直径和不同设计流量泵装置的流道水力损失进行较为客观的比较和评价,提出了名义平均流速的概念。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号