首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 281 毫秒
1.
为了理解气候变化背景下的内陆湖泊水位、面积、水量波动变化规律,科学合理地指导湖泊水资源利用与开发。利用1990-2015年Landsat TM/ETM/OLI影像和2002-2015年多源星载雷达测高资料,借助归一化水体指数(Normalized Difference Water Index,NDWI)提取博斯腾湖湖泊水域面积,结合湖泊水位观测数据,对星载雷达测高数据提取的湖面瞬时水位估计值进行对比与分析;根据湖泊面积与水位、水量与水位的关系式,构建湖泊面积-水位-水量波动时变序列,并探讨湖泊水位和水量变化的年际特征。结果表明:ICESat-GLAS、ENVISatERS、Jason-12的当日水位估计值与附近扬水站的水位观测值绝对误差分别小于0. 21、0. 18、0. 15 m,而且具有较强的相关性和一致性。1990-2002年湖泊水位持续增长阶段; 2002-2015年期间,湖泊水位持续下降。2015年湖泊水域面积比1990年减少了(32. 20±3. 5) km2,年均水位下降了(0. 81±0. 19) m,湖泊水量减少了(9. 49±0. 022)×108m3。因此,湖泊水量变化为气候系统和人类活动的影响机制的理解提供了参考依据。  相似文献   

2.
湖泊既是陆地水资源的重要储蓄场所,也是区域和全球水文循环系统的重要水汽源,是气候变化的重要载体和指示器。为了评估ICESat-2/ATLAS(ice, cloud and land elevation satellite-2/advanced topographic laser altimeter system)测高数据在湖泊水位估计中的精度和应用潜力,以地处青藏高原地区的青海湖为例,基于2018年10月31日至2019年11月8日期间ATL13产品提取的青海湖湖区瞬时水位数据,并结合水文观测、LEGOS(Laboratoire d’Etudes en GéOphysique et ceanographie Spatiales)水位和风浪观测资料,验证了ATL13产品在青海湖的湖泊日均、月均水位估计精度。结果表明:ATL13产品中6束脉冲的光斑脚点高程与高程实测值的绝对误差为0.07 m,标准误差为0.18 m;2018年10月至2019年11月青海湖日均水位呈上升趋势,2018年10月青海湖月均水位估计值为3 195.75 m,2019年11月的月均水位估计值为3 196.21 m,年内湖泊月均水位上升了0.46 m;青海湖的LEGOS水位和水位观测显示,时段内月均水位分别增加了0.29±0.20 m和0.58±0.10 m;ATL13产品估计的湖泊月均水位与水位观测值较为一致,与LEGOS水位的绝对误差为0.17 m,可能受到观测时段、数据质量和空间异质性影响。  相似文献   

3.
湖泊的水位数据作为评价湖泊变化的重要指标,对于研究区域水资源变化和生态环境状况具有重要意义.但绝大多数高原湖泊位于人烟稀少、自然条件恶劣的高海拔地区,往往难以获取基础观测数据.以卫星测高数据和遥感影像数据为基础,获得2008—2018年库赛湖水位和面积数据,并结合气象数据对水位变化原因进行分析.结果表明:库赛湖水位变化...  相似文献   

4.
湖泊既是陆地水资源的重要储蓄场所,也是区域和全球水文循环系统的重要组成部分,其水量波动对气候变化较为敏感。为了掌握湖泊面积、水位和水量的变化规律,借助1988-2018年Landsat TM/ETM/OLI影像和归一化差异水体指数NDWI(normalized difference water index)提取青海湖湖泊水域面积;利用ICESat-GLAS(ice, cloud, and land elevation satellite-geoscience laser altimeter system)测高数据提取青海湖湖泊水位变化,并结合观测资料检验陆地GLAS光斑脚点高程和湖泊水位的估测精度。根据湖泊面积与水位、水量与水位的关系,构建1988-2018年青海湖湖泊面积-水位-水量波动时变序列,并探讨湖泊水位、面积、水量的年内和年际变化特征。结果表明:GLAS光斑脚点高程与高程实测值的标准误差为0.14 m,与SRTM3高程标准误差为0.26 m;1988-2018年青海湖年均水位和水量总体上呈增加趋势,其中年均水位最低值出现于2004年,平均水位为(3 193.0±0.16) m,湖泊面积为(4 190±13) km2;与1988年年均水位相比,2018年青海湖年均水位上升了(1.93±0.22) m,湖泊年均面积扩张了(197.75±6.3) km2,湖泊水量增加了(8.93±0.12) km3。  相似文献   

5.
为得到太湖长期动态变化过程,利用1975—2015年Landsat数据,基于归一化差异水体指数法(NDWI)和改进型归一化差异水体指数法(MNDWI)提取湖泊面积数据,并基于ICESat和Hydroweb数据提取太湖水位数据。将两者相结合,得到了太湖容积变化和水量平衡数据。据此,分析了太湖水位、面积和容积变化的规律和趋势,并对其影响因素进行了研究。结果表明,太湖面积和容积变化近40年来呈缓慢增长趋势,分别从1975年的2 320.07 km~2和-0.047 0 km~3增长到了2015年的2 341.06 km~2和0.275 9 km3,增长趋势不明显;太湖水位总体上呈波动变化趋势,水位从1975年的0.982 6 m变为2015年的1.135 9 m。因此,太湖水位与面积相关性中等(R2≈0.65),容积变化与面积和水位变化的相关性较高(R~20.85)。太湖水量平衡为正平衡且变化不大,为0.009 2 km~3。入湖水量的增加、年降雨量和年蒸发量的变化及政府"退地还湖"政策是导致太湖发生变化的主要原因。  相似文献   

6.
青藏高原的内陆湖泊水位和冰川变化和其流域内冰川质量亏损对湖泊水位波动的影响及其贡献对水量平衡研究具有重要意义。以哈拉湖流域冰川为例,基于2000-2015年星载雷达测高资料和Landsat卫星多光谱遥感资料分别提取湖泊水位和面积变化;结合附近的托勒台站气象观测资料,进一步分析其水位波动变化原因和冰川亏损对湖泊水量贡献。结果表明:受年降水量和夏季降水量增加影响,哈拉湖水位呈增加趋势,但哈拉湖流域冰川亏损加速趋势不明显;与2000年相比,湖泊面积增加了(21.4±4.8)km~2,湖泊水位增加了(1.68±0.26)m,相应的湖泊水容量增加了(16.1±0.3)×10~8m~3水当量。流域冰川亏损量达对哈拉湖水量的贡献率为39.65%,降水量增加对湖泊水量贡献了22.82%。  相似文献   

7.
Sentinel-3A卫星合成孔径雷达高度计(SRAL)因其时空分辨率优势在水位监测上应用潜力较大。基于2016—2018年Landsat-8 与Sentinel-2 光学遥感获取鄱阳湖星子站邻近水域,提取湖上Sentinel-3A SRAL 2级产品卫星测高点,提出一种卫星测高水位计算与校准方法,并结合实测水位进行评估。结果表明:Sentinel-3A SRAL 2级产品在鄱阳湖的过境数据有效率为64%,3—9月有连续覆盖数据,12月至次年2月受水位低或湖滩出露影响无有效数据;不同高程系统下的卫星观测水位与实测水位序列的一致性极显著,皮尔逊相关系数为0.999,在0.001水平上显著相关,实测水位变化量与卫星观测水位变化量的皮尔逊相关系数为1,二者的平均偏差为?0.175 m,标准差为0.084 m,其中降轨统计指标值优于升轨,枯水期则优于丰水期,以降轨枯水期指标值为最优:平均偏差、均方根误差、标准差分别为?0.082、0.107和0.076 m。以2016—2017年、2017—2018年、2016—2018年卫星测高水位与实测数据的平均偏差作为校准参数,校准水位的平均绝对偏差都为0.073 m,皮尔逊相关系数为1。研究验证了卫星测高数据计算和校准河湖水位方法的有效性,该类数据可应用于水文、气候变化研究与洪旱监测等。  相似文献   

8.
针对卫星测高数据质量在湖库地区不稳定问题,提出一种基于数据质量评价、筛选提取水位的方法。使用Jason-3卫星测高数据,选取数据质量不稳定的洪泽湖地区为例进行实验。结果表明,该方法在改善数据精度方面明显优于传统方法,提取的测高水位与实测水位间相关系数从传统方法的0.11提高到0.59,均方根误差也从2m减少到0.5m,使得Jason-3数据用于湖库水位监测时具有较高的可信度。此外,对于那些数据质量不好的周期,提取的水位精度普遍不高,基于数据质量评价结果将它们舍去,可进一步提高了整体的监测精度,相关系数可提高到0.9,均方根误差减少到0.19m,这对于为无资料湖库构建精确的库容曲线具有重要意义。  相似文献   

9.
石臼湖作为长江下游的通江湖泊,逐步形成了独具特色的河流湖泊复合生态系统,研究其生态水位对于保障湖泊生物多样性具有重要意义。利用蛇山水位站1973—2020年日均水位过程,分析石臼湖的水位变异特征,结合年保证率法和年内展布法得到逐月最低生态水位,并对水位突变前后的生态水位保障度进行研究,相关成果可为维护石臼湖水生生态系统结构和功能提供数据参考。  相似文献   

10.
YM-1型有线电传水位计可用来遥测江河、湖泊水位,在室内指示瞬时水位并记录水位变化过程。  相似文献   

11.
根据博斯腾湖1956-2008年实测水位、入湖水量资料,分析了入湖水量与博斯腾湖水位变化关系,采用相关方法计算了博斯腾湖汛期设计入湖水量,并指出博斯腾湖水位的变化主要影响因素为汛期入湖水量,并不是短历时场次洪水,以此为计算基础,得出结论:博斯腾湖最大输水能力下,100年一遇洪水位为1048.6 m,50年一遇洪水位1 048.47 m,可为博斯腾湖水量调度、东、西泵站等输水工程的运行管理提供一定的参考价值。  相似文献   

12.
Monitoring the water level and volume changes of lakes and reservoirs is essential for deepening our understanding of the temporal and spatial dynamics of water resources in the Yellow River Basin, with a view to better utilizing and managing water resources. In recent years, there have been many studies on monitoring water level and volume changes in inland waters, but they were mainly focused on radar altimetry and the full waveform LiDAR ICESat, which was retired in 2010. Few studies based on the latest photon-counting LiDAR ICESat-2 have been reported. Compared with previous sensors, ICESat-2 has great advantages in footprint size, transmitting frequency, pulse number, etc, but its performance in monitoring water level and volume changes in inland waters has not been fully explored. Here we investigated the spatial distribution of water level and volume changes of 11 lakes and 8 reservoirs in the Yellow River Basin based on ICESat-2 and Google Earth Engine, and analyzed the factors affecting the measurement uncertainties. In-situ validation of lake level in Lake Qinghai indicates that the Root Mean Square Error (RMSE) of our result is only 7 cm after the reference coordinate system conversion. We found that the water level trend of the natural lake shows significant seasonal variations, while the water level trend of the reservoir shows a sharp rise and fall. In addition, precipitation plays a decisive role in the changes in natural lake levels and indirectly affects the artificial control of reservoirs’ water discharges. The uncertainty of water volume change monitoring is mainly affected by water level measurement uncertainty for lakes, while for reservoirs, that is affected by the combination of water level and area measurement uncertainties. The stability of lake level measurement increases with the increase in photon counts. The introduction of ICESat-2 ATL13 Significant Wave Height might lead larger standard deviation in water level measurement. According to the law of propagation of uncertainty, the uncertainty of the water volume change estimation by the combination of ICESat-2 and GEE is less than 9 %.  相似文献   

13.
The variation in Lake Balkhash water levels during the period from 1992 to 2010 and their relationship with climate dynamics were investigated in this study, using satellite altimetry data and meteorological records from climate stations located in the lake catchment basin. The altimetry‐derived water level demonstrated a general water level increase, reaching a mean value of 8.1 cm year?1 in July 2005, with a maximum value of 342.52 m. The increased Lake Balkhash water level was accompanied by an overall upward trend in precipitation and temperature in the catchment basin during the study period. A strong increase in the winter and spring temperature was the main contributor to the general upward temperature trend, whereas a significant change of summer and autumn precipitation was the major contributor to the annual precipitation trend. Neither precipitation nor temperature increased uniformly across the entire lake drainage basin. The study results identified the most pronounced climate change occurring in the mountainous part (>2000 m above sea level) of the basin, in the upper reaches of the Ili river, which is the main water inflow to the lake. Statistical analysis indicated the Lake Balkhash water level is strongly correlated with both precipitation and temperature. The correlations were investigated for three altitudinal strata (<1000 m, 1000–2000 m, >2000 m) corresponding to the lower, middle and upper reaches of the Ili river. The best correlations were obtained for the upper reaches of the Ili river, indicating a changing snow cover and glacier equilibrium are the main factors controlling the water level trends in Lake Balkhash.  相似文献   

14.
The water level variations of the Lake Balkhash, the Kapshagay Reservoir and the Ili River and the linkage with salinity and biological conditions are investigated in this work using different techniques: satellite radar altimetry, in situ gauges, historical archives of fish population counting and field works. We show that it is possible now to monitor, over decades, in near real time, with high precision, the water level changes in the Lake Balkhash from satellite altimetry, over the reservoir and also along the Ili River. The vulnerability of the lake fauna and flora populations is enhanced by the morphometry of the lake: shallow and separation of the eastern basin from the western basin through the narrow Uzun‐Aral strait. Water policy of the Ili River also plays a fundamental role in the evolution of the Balkhash Lake. The Ili River that provides 80% of the surface water of the lake is a transboundary river. Development of intense irrigated agriculture in the upstream part of this river, located in the Chinese territory, could lead in the future to high hydrological stress in the downstream regions with potentially high damage in the delta and for fishery production. We show here the recent evolution of the Lake Balkhash basin from satellite data. Some interannual oscillation of 6–8 years over the last decade has been highlighted, with a water level of the lake still at a high value, but prediction on increasing irrigation is also highlighting the vulnerability of this lake. Linkage between water level change along the river and the downstream waters is also investigated. It shows that the role of the reservoir is not fundamental in the understanding of the Lake Balkhash water level changes which is in contrast highly correlated to upstream river level changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号