首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
制备粘结钕铁硼磁体的温压工艺研究   总被引:2,自引:0,他引:2  
将温压成型工艺应用于粘结钕铁硼磁体的制备过程,可以提高粘结磁体密度和磁性能.通过对室温压制工艺和温压工艺制得的粘结磁体对比,考察了压制压力与粘结磁体密度以及磁体磁性能之间的关系;考察了三种适用于温压工艺的粘结剂对磁体性能的影响,获得了制备粘结磁体的合理工艺参数,并以此为指导在温压温度为130℃条件下,获得密度为6.25kg/m^3、最大磁能积(BH)max为81kJ/m^3的粘结磁体.  相似文献   

2.
采用温压成型的方法制备各向同性粘结NdFeB磁体,主要研究了成型温度、成型压力对磁体密度、磁性能及力学性能的影响。结果表明,采用温压成型工艺,可以在较低的压力下压制出高致密度的粘结NdFeB磁体。磁体磁性能随压制力的增加呈现先升高后降低的变化规律;温度越高,磁性能达到极值所需的压力越小。经过工艺参数优化后所制备的粘结NdFeB磁体获得了较高的磁性能与力学性能,其磁能积、抗压强度分别为88kJ/m3与192MPa。  相似文献   

3.
采用温压工艺制备粘结NdFeB磁体,发现温压技术可以有效地提高牯结磁体的密度.改善磁体磁性能.研究表明:温压效果与温压温度的选择和温压压力密切相关.通过对温压机理的分析,发现最佳温压温度由粘结剂的软化点、粘度和固化点三个因素共同决定.而随着温压压力的升高,粘结NdFeB磁体的密度和磁件能增大,并在压力为650 MPa时得到了粘结磁体磁能积的最大值(50.43 kJ/m~3).  相似文献   

4.
研究了用快淬钕铁硼制备粘结磁体的工艺以及工艺因素对粘结磁体性能的影响。结果表明,不同尺寸的颗粒按一定比例混合可以适当提高磁性能;粘结剂的含量对磁体的性能有影响,其含量应该在一个合适的范围;随成型压力的增大,剩余磁化强度和磁能积增大;为防止氧化,各个过程应采用惰性气氛保护,氧化后磁体出现-αFe相。最优粘结磁体性能如下:密度ρ=(6.3~6.4)g/cm3,剩磁Br=7.14×10-1T,内禀矫顽力Hcj=7.24×105A/m,最大磁能积(BH)max=8.76×104J/m3。  相似文献   

5.
采用熔体快淬及热处理工艺制备Nd10.1Fe76.2Co4.5Zr3B6.2永磁材料,研究了制备工艺参数和热处理工艺对材料结构和磁性能的影响.结果表明,粘结磁体的磁性能与熔体快淬和热处理工艺密切相关,快淬速度为20m/s的薄带经690℃×4min退火处理可得到最佳磁性能Br=0.714T、JHc=698kA/m、(BH)max=82.0kJ/m3.  相似文献   

6.
采用流动温压成型方法制备各向同性粘结NdFeB/锶铁氧体复合磁体,并研究了不同固化条件对磁体磁性能及抗压强度的影响。结果表明,直接在电阻炉中固化的磁体抗压强度最好,在氩气保护的环境下固化有助于提高磁体磁性能,当磁体在氩气保护的环境下于180℃时固化120min时获得了最佳的性能:剩磁Br=0.52T,内禀矫顽力Hcj=740.48kA/m,最大磁能积(BH)max=39.82kJ/m3,抗压强度σbc=185.98MPa。  相似文献   

7.
研究了在取向磁场下由HDDR磁粉注射成型的各向异性粘结NdFeB磁体,分析了粘结剂和添加剂对各向异性粘结NdFeB磁体的密度、磁性能以及抗压强度的影响.通过磁粉表面改性,磁粉的抗氧化性能以及磁体的磁性能都得到提高.比较了6种粘结剂对磁体性能的影响,从中得到比较理想的粘结剂,并且考察了抗氧剂以及润滑剂加入量对于磁体性能的影响.试验中,混炼温度为205~215 ℃,注射温度为265℃,注射压力为5~6 MPa,保压时间为5 s,模具加热温度为80℃.制得的磁体的性能为:Br=0.72 T,iHc=983 kA/m,(BH)max=75 kJ/m3.  相似文献   

8.
采用部分过快淬加后续晶化退火处理的方法,研究了快淬速度和晶化工艺对低稀土含量Pr0.5(FeCoZr)83.5B6粘结磁体磁性能的影响。通过实验对比发现,以26m/s速度快淬出的条屑由微晶和非晶组织组成,在700℃经10min的晶化处理,可获得最佳磁性能,用3.25%(质量分数)环氧树脂粘结的磁体磁性能为:Br=0.673T,Hci=610kA/m,Hcb=379kA/m,(BH)rn=71kJ/m^3,具有较高的内禀矫顽力和综合磁性能。  相似文献   

9.
采用快淬后真空晶化退火工艺制备了成分为Nd8.5-xDyxFe77Ga0.6Co5Zr2.7B6.2(x=0,0.5,1.0)的纳米晶复合永磁粘结磁体,研究其磁性能和温度系数的变化。结果表明,添加Dy元素能有效提高磁体的内禀矫顽力,但使其剩磁和较大磁能积略有下降。Dy含量为0.5at%时,制得的粘结磁体具有较佳磁性能:Br=0.728T,jHc=656.3kA/m,(BH)max=76.2kJ/m3。随着Dy元素的添加,合金的剩磁温度系数α逐渐降低,当Dy=1at%时,在20℃~150℃温度区间内平均剩磁温度系数α=-0.12%/℃。随着Dy元素的添加,合金的内禀矫顽力温度系数β呈先下降后上升的趋势。在Dy=0.5at%时,具有较低的β值,在20℃~150℃温度区间内平均内禀矫顽力温度系数β=-0.34%/℃。  相似文献   

10.
研究磁粉粒度对注射成形粘结NdFeB磁体性能的影响。结果表明:随着磁粉粒度减小,喂料粘度值升高,粘流指数n值降低,其注射工艺性能更好;制备粘结磁体的抗压强度更高,但其不可逆磁损失也增大。NdFeB磁粉粒度太粗或太细均不利于磁体性能的提高,其最佳粒径范围是80-100μm;通过粒度级配可以降低喂料粘度值或提高临界装载量,在此基础上制备高性能的各向异性粘结NdFeB磁体,其Br、iHc、(BH)max及σbb分别为878 mT、1 212.3 kA/m、128 kJ/m^3及73 MPa。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号