共查询到19条相似文献,搜索用时 93 毫秒
1.
针对传统脉冲耦合神经网络(PCNN)无法准确提取多聚焦图像聚焦区域的问题,提出一种利用相位一致性(PC)来检测图像清晰区域,并结合PCNN的多聚焦图像融合算法。首先,利用非下采样轮廓波变换(NSCT)对源图像进行多尺度分解,分别得到图像的高频子带和低频子带;其次,通过计算高频系数的空间频率值(SF)与低频系数的相位一致性值来提取图像高低频子带中的聚焦区域;然后,将SF与PC作为PCNN外部激励来刺激PCNN神经元点火,分别对图像高低频系数进行融合;最后,利用逆NSCT得到最终融合图像。实验采取多聚焦图像Clock、Pepsi和Lab作为三组实验数据集,与传统融合算法及新近提出的几种算法进行对比,所提算法的客观评价参数:互信息、边缘信息度、信息熵、标准差和平均梯度的数值均大于或十分接近于对比算法的最大值;同时从实验结果图与源图像的差值图中可以发现所提算法的差值图包含源图像清晰区域的痕迹明显更少。实验结果表明所提算法能更加准确地提取出图像的清晰区域,更好地保留图像的边缘与纹理等细节信息,得到更好的融合效果。 相似文献
2.
有效地融合高分辨率全色遥感图像(PAN)和低分辨率多光谱图像(MS),均衡融合结果中的空间细节信息和光谱信息两项特征指标,是多源遥感图像融合技术的难点。为了提高融合后图像的质量,提出了一种基于非采样Contourlet变换(NSCT)的融合方法。由于"非采样Contourlet变换"采用非采样滤波器组实现,具有移不变、高方向性和各向异性的特点,能够较好地弥补"采样的Contourlet变换(CT)"的缺陷,并且解决了小波变换方向性差的问题。实验中,以Landsat TM5图像和SPOT图像进行了算法的验证,并针对传统的直接替换、绝对值选大和局部方差选大等多分辨率融合算法与离散小波变换(DWT)及"采样的Contourlet变换"进行了对比分析,结果表明,本文方法在提高空间信息的同时,可以较好地保持原始多光谱图像中的光谱信息,弥补了"采样的Contourlet变换"在遥感图像融合应用中会导致严重的色彩畸变的缺陷。从而证明了NSCT在遥感图像融合领域是一种有效的多分辨率分解策略,可以被成功的应用到遥感图像融合应用中。 相似文献
3.
利用PCNN(Pulse Coupled Neural Network)在图像处理中的独特优势,提出了一种基于小波变换的PCNN多传感器图像融合方法。对源图像进行小波分解,得到不同尺度下的子带图像;在小波域中利用PCNN的同步脉冲激发特性,制定基于PCNN的融合规则;使用不同尺度下的小波系数的SF(Spatial Frequency)作为对应神经元的链接强度,经过PCNN点火得到源图像在小波域中的点火映射图;通过判决选择算子,选择点火次数多的小波系数作为对应的融合系数,进行区域一致性检验,获到最终的融合系数;对融合后的系数进行小波逆变换得到融合图像。实验结果表明,该方法有效地综合源图像中的重要信息,得到更好视觉效果和更优量化指标的融合图像,在主客观评价上均优于小波、PCNN等方法。 相似文献
4.
论文对多光谱图像和高分辨图像进行了融合。对多光谱图像进行IHS变换,利用变换后得到的强度分量和高分辨图像具有较强的相关性,在小波变换域进行图像融合。根据小波变换有三个方向的高频细节这一特点,提出了一种新的空间频率概念,基于这种空间频率进行图像融合,得到了同时具有较好的空间分辨率和光谱信息的融合图像。实验结果表明该方法得到的融合图像优于传统的IHS变换法和传统小波变换方法。 相似文献
5.
分析了非抽样Contourlet变换(Nonsubsampled Contourlet Transform,NSCT)的原理,提出了一种新的基于NSCT的医学图像融合算法,应用NSCT对CT和MRI图像进行多尺度、多方向分解,低频子带采取区域能量加权法融合,带通子带采取模最大融合,最后将融合的系数进行NSCT逆变换得到融合图像。实验表明,与其它融合算法比较,该算法融合图像效果较好。 相似文献
6.
7.
丁岚 《数字社区&智能家居》2008,3(12):1700-1702
由于可见光成像系统的聚焦范围有限,很难获得同一场景内所有物体都清晰的图像,多聚焦图像融合技术可有效地解决这一问题。Contourlet变换具有多尺度多方向性,将其引入图像融合,能够更好地提取原始图像的特征,为融合图像提供更多的信息。该文提出了一种基于区域统计融合规则的Contourlet变换多聚焦图像融合方法。先对不同聚焦图像分别进行Contourlet变换.采用低频系数取平均,高频系数根据区域统计值决定的融合规则。再进行反变换得到融合结果。文中给出了实验结果.并对融合结果进行了分析比较,实验结果表明,该方法能够取得比基于小波变换融合方法更好的融合效果。 相似文献
8.
针对目前最新发展的无下采样Contourlet变换,同时具有方向性、各向异性和平移不变性的特点,提出了一种新的基于无下采样Contourlet变换图像融合算法。首先对原始图像进行无下采样的Contourlet变换,得到高频和低频图像系数;然后根据它们的系数特性,采用一种新的加权融合规则对其进行融合。实验证明,此方法相对于传统的变换法,取得更优的融合结果。 相似文献
9.
DING Lan 《数字社区&智能家居》2008,(34)
由于可见光成像系统的聚焦范围有限,很难获得同一场景内所有物体都清晰的图像,多聚焦图像融合技术可有效地解决这一问题。Contourlet变换具有多尺度多方向性,将其引入图像融合,能够更好地提取原始图像的特征,为融合图像提供更多的信息。该文提出了一种基于区域统计融合规则的Contourlet变换多聚焦图像融合方法。先对不同聚焦图像分别进行Contourlet变换,采用低频系数取平均,高频系数根据区域统计值决定的融合规则,再进行反变换得到融合结果。文中给出了实验结果,并对融合结果进行了分析比较,实验结果表明,该方法能够取得比基于小波变换融合方法更好的融合效果。 相似文献
10.
非下采样Contourlet变换的图像融合及评价* 总被引:1,自引:0,他引:1
分析和研究了非下采样Contourlet图像表示方法及其在图像变换中的优点,提出一种基于非下采样Contourlet变换的图像融合方法。首先将待融合源图像分解成不同尺度、多方向的频带;然后采取不同的融合方法对分解的高低频分量进行融合处理,低频系数采取局部能量优先的加权法融合,高频系数则采取局部梯度优先的加权法融合;最后将融合的各频带进行逆非下采样Contourlet变换得到融合图像。实验表明,在几种不同的客观评价标准下,该方法优于传统的小波域中的融合效果,能有效消除小波变换带来的光谱扭曲和假边缘现象。 相似文献
11.
文中研究了非抽样Contourlet变换(NSCT)的原理,以及其多尺度、局部化、方向性和各向异性等优点。提出了一种基于NSCT的多聚焦图像融合新算法。本算法将多聚焦图像进行NSCT分解,不同子带采用不同的融合规则,低频子带采用新的基于灰度形态学梯度算子的融合算法,并做一致性检测,带通子带采用基于区域能量的融合算法。最后将融合得到的系数进行NSCT反变换得到融合图像。实验结果表明,与其他融合算法相比较,该算法可以更有效地保留源图像信息和细节特征。 相似文献
12.
在基于非下采样Contourlet变换(NSCT)上提出了一种新的图像融合算法。对经NSCT的低频子带系数采取基于区域能量自适应加权的融合规则,对高频子带系数采用一种混合的融合规则,即选用基于区域强度比的加权选择融合策略进行低层的选择,高层采用像素点的绝对值取大的方法进行选取。实验结果表明,该算法在目视判别以及客观标准下明显优于文中其他基于多尺度分析的图像融合算法,可获得较理想的融合图像。 相似文献
13.
基于非子采样Contourlet变换的图像融合方法 总被引:5,自引:1,他引:5
分析了非子采样Contourlet变换滤波器组的设计与实现方法,提出一种基于非子采样Contourlet变换的图像融合方法.首先将图像作非子采样拉普拉斯金字塔尺度分解,并在各尺度层使用非子采样方向滤波器组对高频子带作方向分解,构成非子采样Contourlet变换;然后,采用基于区域能量的融合规则得到融合图像的非子采样Contourlet系数;最后进行非子采样Contourlet逆变换得到融合图像.实验结果表明,该方法的融合效果优于à trous小波变换方法和Mallat小波变换方法. 相似文献
14.
随着融合技术的发展、小波理论的成熟,小波变换以其良好的时频特性在图像融合领域脱颖而出.本文在小波变换理论的基础上,提出了一种结合小波分解的改进型PCNN图像融合新方法.首先对两幅已经配准的原始图像进行小波多尺度分解;然后基于改进后的脉冲耦合神经网络模型提出一种新的融合规则,文中重点针对小波分解后高频域和低频域的特点,分... 相似文献
15.
基于提升小波变换与自适应PCNN的医学图像融合方法 总被引:4,自引:0,他引:4
为了更好地满足临床辅助诊断和治疗的需要,提出一种基于提升小波变换的CT与MRI图像的融合方法.该方法在低频子带采用基于区域能量的融合规则;高频子带采用自适应脉冲耦合神经网络(PCNN)的融合规则,通过应用PCNN简化模型把图像逐像素的梯度能量作为PCNN的链接强度,使得PCNN能根据像素梯度能量的变化来自适应地调整链接强度的大小,并根据点火次数确定高频子带融合系数.实验结果表明,文中方法与传统融合方法相比性能优越,丰富了融合图像的边缘及细节信息,可取得更好的融合效果. 相似文献
16.
基于非下采样Contourlet 变换的多分辨率图像融合方法 总被引:1,自引:0,他引:1
提出了一种基于非下采样contourlet 变换(NSCT) 的多分辨率图像融合方法,通过非下采样金字
塔(NSP) 和非下采样方向滤波器组(NSDFB) 实现对图像的多尺度多方向分解.该方法既保留了contourlet 变换
方法良好的多分辨率特性,又具有平移不变性.在融合处理中,采用一种改进的一致性校验策略;在高频系
数中除了进行本层的一致性校验外,还进行多层之间的一致性校验.实验结果表明,该方法取得了良好的融
合效果,所得融合图像的多项指标都优于拉普拉斯金字塔变换、小波变换、contourlet 变换等方法. 相似文献
17.
针对遥感图像影像分辨率低的问题,提出了一种新的基于非下采样Contourlet变换的图像融合算法.该算法首先通过IHS变换对多光谱图像进行RGB-IHS颜色空间转换,然后利用非下采样Contourlet变换和模糊推理加权融合规则将强度分量与全色图像进行融合,最后用拉伸后的灰度融合图像替换原来的强度分量,并通过IHS逆变换得到最终的融合网像.实验结果表明,该方法在抑制光谱信息扭曲和提高图像清晰度等客观评价参数上均优于其他多分辨率分析方法,且克服了传统融合方法中存在的融合图像模糊、抗噪能力差的缺点. 相似文献
18.
基于非采样Contourlet变换多传感器图像融合算法 总被引:10,自引:0,他引:10
针对同一场景多聚焦图像的融合问题, 提出了一种基于非采样 Contourlet 变换 (Nonsubsampled Contourlet transform, NSCT) 图像融合算法. 并对经 NSCT 分解得到的不同频域子带系数, 分别讨论了低频子带系数和各带通方向子带系数的选择方案. 在选择低频子带系数时, 提出了一种基于图像局部区域梯度能量和``加权平均'相结合的系数选择方案, 从而不仅能够恰当地选择融合后图像的 NSCT 系数, 还能够有效地抑制噪声对融合图像质量的影响; 在选择带通方向子带系数时, 充分利用了 NSCT 的方向特性以及各尺度子带图像与源图像尺寸大小相同的特性, 给出了非采样 Contourlet 域方向对比度的概念, 并提出了一种基于方向对比度的系数选择方案. 采用了多聚焦图像进行仿真实验, 并对融合结果进行了主客观评价. 实验结果表明, 相比于传统的基于小波变换的图像融合算法, 该算法能够有效避免``人为'效应或高频噪声的引入, 得到具有更好视觉效果和更优量化指标的融合图像. 相似文献
19.
基于非下采样Contourlet的多传感器图像自适应融合 总被引:4,自引:0,他引:4
提出了一种基于非下采样Contourlet变换的多传感器图像自适应融合方法,采用黄金分割法搜索最优的低频融合权值.自适应地对多传感器图像的低频子带系数进行融合.非下采样Contourlet变换是一种新的图像多尺度、多方向的表示方法,适合表达具有丰富细节信息及方向信息的图像,且该变换具有平移不变性,可以避免一般方法对融合图像引入的振铃效应,它的高频方向子带捕获了多传感器图像的显著特征,文中采用同一尺度下方向子带信息和取大的规则对高频系数进行融合.实验结果表明,与基于拉普拉斯塔、小波、平稳小波和Contourlet变换的方法比较,文中所提出的方法可以获得较好的融合效果. 相似文献