首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
三维针刺碳毡经化学气相渗透(Chemical Vapor Infiltration,CVI)增密制备C/C素坯,通过气相渗硅(Gaseous Silicon Infiltration,GSI)制备C/C-SiC复合材料。研究素坯密度与CVI C层厚度及素坯孔隙率的变化规律,并分析素坯密度对C/C-SiC复合材料力学性能、热学性能的影响。结果表明:随着素坯密度增大,CVI C层变厚,孔隙率减小;C/C-SiC复合材料中残C量随之增大,残余Si量随之减小,SiC先保持较高含量(体积分数约40%),随后迅速降低,C/C-SiC复合材料密度逐渐减小,力学性能先增大后减小,而热导率及热膨胀系数降低至平稳。当素坯密度为1.085g/cm3时,复合材料力学性能最好,弯曲强度可达308.31MPa,断裂韧度为11.36MPa·m1/2。研究发现:素坯孔隙率较大时,渗硅通道足够,残余硅多,且CVI C层较薄,纤维硅蚀严重,C/C-SiC复合材料力学性能低;素坯孔隙率较小时,渗硅通道很快阻塞,Si和SiC含量少,而闭孔大且多,C/C-SiC复合材料力学性能也不高。  相似文献   

2.
以中间相沥青浸渍整体碳毡发泡技术制备的一种新型多孔C/C泡沫复合材料为预制体,通过液相硅浸渗(LSI)工艺制备了C/SiC复合材料,研究了预制体不同孔隙率对Si浸渗及C/SiC复合材料力学性能和微观形貌的影响,分析了复合材料的物相组成和晶体结构.结果表明,采用发泡技术可以快速有效地实现C/C预制体的致密化处理.预制体孔隙率为65.41%时液相硅浸渗处理后所得复合材料性能最好,密度为2.64g/cm3,弯曲强度为137MPa,弹性模量为150GPa.纤维未作表面抗硅化涂层处理以及复合材料中存在闭孔是C/SiC复合材料性能不佳的主要原因.  相似文献   

3.
李专  肖鹏  熊翔  刘建军 《材料导报》2008,22(5):123-126
以短切炭纤维为增强相,采用温压-原位反应法制备C/C-SiC材料,研究了热处理温度对C/C-SiC材料组织结构的影响,以及Si(1)-C原位反应机理.结果表明:试样中硅粉均匀分布于素坯内部,Si-C原位反应只需Si近程扩散即可.Si粉熔化后迅速在就近的炭源表面铺展,并与之反应生成SiC.Si(1)-C反应相对于Si(s)-C反应速度更快,反应更完全.温度越高,生成的SiC也就越多,残留Si相应减少.1500 ℃热处理后复合材料的SiC含量达到62.7%,残留Si仅为1.4%.  相似文献   

4.
对不同硅含量的铝合金无压浸渗Si3N4预制件制备了Si3N4/Al复合材料,并对其性能进行了研究分析。结果表明:在无压浸渗过程中,Si3N4与铝合金发生了界面反应;Si3N4/Al复合材料的断裂机制以基体的韧性撕裂和增强体的脆性断裂为主;当无压浸渗用铝合金中硅质量分数从0增加到12%时,Si3N4/Al复合材料的硬度由69HRA增加到77HRA,抗弯强度由498MPa降低至333MPa。  相似文献   

5.
采用密度为1.0g/cm~3的C/C素坯,联合化学气相渗透(CVI)和气相渗硅(GSI)2种工艺制备C/C-SiC复合材料,研究CVI C/C-SiC复合材料中间体的密度对CVI-GSI C/C-SiC复合材料物相组成、微观结构及力学性能的影响。结果表明:随着CVI C/C-SiC复合材料中间体密度的增大,CVI-GSI C/C-SiC复合材料C含量增多,残余Si含量减少,SiC含量先增多后减少,CVI-GSI C/C-SiC复合材料的密度先增大后减小;随着CVI C/C-SiC复合材料中间体的密度由1.27g/cm~3增加到1.63g/cm~3时,得到的CVI-GSI C/C-SiC复合材料的力学性能先升高后降低。当CVI C/C-SiC复合材料密度为1.42g/cm~3时,制得的CVI-GSI C/C-SiC复合材料力学性能最好,其弯曲强度为247.50MPa,弯曲模量为25.63GPa,断裂韧度为10.08MPa·m~(1/2)。  相似文献   

6.
以三维针刺碳毡作为预制体,先采用树脂单向加压浸渍-热解工艺制备出C/C多孔体,再通过反应熔体浸渗法获得C/SiC复合材料。重点研究了C/C多孔体的高温热处理对C/SiC复合材料结构和力学性能的影响。结果表明,C/C多孔体的高温热处理不会改变C/SiC复合材料的相组成,但可使复合材料中的SiC含量提高,C含量降低;高温热处理有利于熔融Si浸渗,使复合材料致密度增大,孔隙率降低,从而使其弯曲断裂强度提高约28%;高温热处理还可使纤维-基体界面结合强度降低,改善复合材料的断裂韧性。  相似文献   

7.
内部硅化法制备低成本C/SiC复合材料   总被引:1,自引:0,他引:1  
闫联生  李贺军  崔红  王涛 《材料工程》2005,(9):41-44,52
采用内部硅化法制备了低成本C/SiC复合材料,通过三点弯曲法表征了复合材料的强度,采用X射线衍射(XRD)分析了基体组成,通过扫描电镜(SEM)研究了纤维/基体界面和复合材料断裂面的微观结构.结果表明,纤维表面沉积CVD-SiC保护涂层能够有效保护碳纤维不被硅侵蚀,调整硅粉和酚醛树脂配比使C∶Si摩尔比等于10∶ 9,可消除SiC基体中的残余自由硅.研制的低成本2D C/SiC复合材料的弯曲强度和剪切强度分别达到247MPa与13.6MPa.2D C/SiC复合材料的断裂行为呈现韧性破坏模式,在断裂面存在大量的拔出纤维,复合材料的断裂韧性(KIC)达到12.1MPa·m1/2.  相似文献   

8.
基于熔融Si浸渗法制备出较致密的SiC/TiB2复合材料, 并研究了坯体成形压力对SiC/TiB2复合材料致密度、相组成、显微组织和力学性能的影响。实验结果表明, 复合材料由TiB2、SiC和Si相组成。SiC/TiB2复合材料的显微组织特征为: TiB2相和SiC相均匀分布, 游离Si填充在TiB2相和SiC相的空隙处, 且形成了连续相。随成形压力的增大, 复合材料中游离Si含量降低, TiB2颗粒尺寸减小, 复合材料的力学性能先增加后降低。坯体最佳成形压力为200 MPa, 对应SiC/TiB2复合材料的体积密度、开口气孔率、抗弯强度、断裂韧性和维氏硬度分别为3.63 g/cm3、0.90%、(354±16) MPa、(6.8±0.2) MPa·m1/2和(21.0±1.1) GPa。  相似文献   

9.
通过理论计算,探究C_f/SiC复合材料密度与C/C坯体密度的相关性;而后采用碳纤维布叠层制作2D C/C坯体,经先驱体浸渍裂解工艺增密,制得密度分别为0.98、1.06、1.12g/cm~3的C/C坯体,通过液相渗硅法反应合成2DC_f/SiC复合材料,探究C/C坯体密度对其结构和性能的影响。与理论计算结果来对比。研究结果表明:试验结果与理论数学计算结果基本一致。随着C/C坯体密度的增加,C_f/SiC复合材料的密度出现先上升后下降的趋势,当C/C坯体密度大于0.98g/cm~3后,复合材料的弯曲强度随着C/C坯体密度的增加而降低,C/C坯体密度为0.98g/cm~3时,2DC_f/SiC复合材料结构和性能较优。  相似文献   

10.
采用浆料浸渗结合液硅渗透法原位生成高韧性Ti3SiC2基体,制备Ti3SiC2改性C/C—SiC复合材料。研究了TiC颗粒的引入对熔融Si浸渗效果的影响,分析了Ti3SiC2改性C/C-SiC复合材料的微结构和力学性能。实验结果表明:TiC与熔融si反应生成Ti3SiC2是可行的,而且c的存在更有利于生成Ti3SiC2;在含TiC颗粒的C/C预制体孔隙(平均孔径22.3μm)内,熔融si的渗透深度1min内可达10.8cm;Ti3SiC2取代残余Si后提高了C/C-SiC复合材料的力学性能,C/C-SiC-Ti3SiC2复合材料的弯曲强度达203MPa,断裂韧性达到8.8MPa·m^[1/2];对于厚度为20rllm的试样,不同渗透深度处材料均具有相近的相成分、密度和力学性能,无明显微结构梯度存在,表明所采用的浆料浸渗结合液硅渗透工艺适用于制备厚壁Ti3SiC2改性C/C-SiC复合材料构件。  相似文献   

11.
采用无压熔渗方法制备炭纤维整体织物/炭2铜 (C/ C2Cu) 复合材料 , 在 MM22000型环2块摩擦磨损试验机上考察复合材料的摩擦磨损性能 , 利用扫描电子显微镜观察分析磨损表面形貌 , 研究 C/ C坯体对材料的摩擦磨损行为的影响及机制。结果表明 : 随着 C/ C坯体密度的增加 , 摩擦系数及 C/ C2Cu材料自身和对偶的磨损量均降低 ; 采用浸渍/炭化 ( I/ C) 坯体的 C/ C2Cu材料摩擦系数及自身和对偶件的磨损量均高于采用化学气相渗透(CVI) 坯体的试样; 摩擦面平行于纤维取向的试样摩擦系数低于垂直于纤维取向的试样 , 但磨损率较高。  相似文献   

12.
(SiC,TiB2)/B4C复合材料的烧结机理   总被引:3,自引:2,他引:1       下载免费PDF全文
研究了在热压条件下制备 (SiC, TiB2)/ B4C复合材料的烧结机理。认为烧结助剂的加入使本体系成为液相烧结,同时粉料的微细颗粒对复合材料的烧结致密也有重要贡献。分析和测量了制取的复合材料的相组成、显微结构和力学性能。结果表明,采用B4C与Si3N4和少量SiC、TiC为原料,Al2O3+Y2O3为烧结助剂,在烧结温度1800~1880℃,压力30 MPa的热压条件下烧结反应生成了SiC、TiB2和少量的BN,制取了(SiC, TiB2)/B4C复合材料。所形成的晶体显微结构为层片状。制得的试样的硬度、抗弯强度和断裂韧性分别可达HRA88.6、540 MPa和5.6 MPa·m1/2。   相似文献   

13.
Silicon carbide (SiC) composites are fabricated by selective laser sintering (SLS) combined with reactive melt infiltration (RMI) using SiC powder mixed with various contents (0–32 vol%) of chopped carbon fiber (CCF) as reinforcement phase and carbon source. The introduction of an appropriate amount of CCF can reduce the shrinkage and step effect caused by slicing, improving the forming quality of the CCF/SiC preforms after pyrolysis. Meanwhile, as a carbon resource, CCF can react with molten silicon to form the β-SiC, improving the mechanical properties of CCF/SiC composites. The result shows that the CCF/SiC powder shows excellent fluidity, and the angle of repose of the CCF/SiC powder is 32–40° when the proportion of CCF is less than 24 vol%. CCF/SiC preforms shrinkage is lower than 1.74% and 1.94% along the nonadditive and additive manufacturing directions, respectively. Compared without CCF, the bending strength and fracture toughness of the CCF/SiC composites with 8 vol% CCF improve from 137.9 MPa and 2.69 MPa m1/2 to 177.1 MPa and 3.10 MPa m1/2, respectively. This study is believed to provide a new strategy for additive manufacturing of high-performance CCF/SiC composites with high CCF content by SLS.  相似文献   

14.
Abstract

Low cost C/C–SiC composites were prepared by alloyed reactive melt infiltration. Effects of the density of C/C preforms on mechanical properties and microstructure of the C/C–SiC composites are reviewed. The results show that with increasing the density of C/C preforms, the flexural strength of the resulting composites increases, while the density of the composites decreases. The flexural strength can reach 341 MPa for the composite produced from the C/C preform of 1·3 g cm?3. The phases in the composites produced from low density C/C preforms are Si, SiC, ZrSi2 and carbon, while no Si phase is found in the composites with high density C/C preforms. Furthermore, the mechanism of the microstructure evolution of the C/C–SiC composites is proposed.  相似文献   

15.
以微米级B4C粉体为原料,通过与TiO2葡萄糖原位反应制备TiB2颗粒增韧B4C复合材料。研究了烧结温度和烧结助剂对材料烧结行为及力学性能的影响。在1950℃反应热压下获得了相对密度为97.7%的TiB2/B4C复合材料,断裂韧性达到5.3 MPa·m1/2。添加Al2O3和Si烧结助剂后,分别在1950℃和1900℃ 获得了接近致密的(TiB2,Al2O3)/B4C和(TiB2,SiC)/B4C复合材料,断裂韧性分别提高到7.09和6.35 MPa·m1/2。显微组织分析表明,增韧作用主要来自残余应力引起的裂纹偏转。  相似文献   

16.
分别采用纳米SiC晶须(SiCW)、SiC颗粒(SiCP)及SiCW与SiCP共同增韧ZrB2陶瓷,在1950℃、20 MPa压力、氩气气氛下热压烧结制备了致密的SiC/ZrB2陶瓷材料。研究了SiCW和SiCP的添加量对于SiC/ZrB2陶瓷材料的显微结构、力学性能的影响,并分析了SiCW和SiCP对ZrB2陶瓷力学性能影响的协同作用和增韧机制。结果表明:含15 vol% SiCW 的复合材料的韧性达到8.08 MPa·m1/2,含15 vol% SiCP的复合材料的韧性达到8.515MPa·m1/2,共同添加15 vol% SiCW和15 vol%SiCP的复合材料的韧性最高达到9.03 MPa·m1/2。SiC/ZrB2复合材料强度和韧性提高的原因在于SiCW和SiCP抑制ZrB2晶粒长大,促进ZrB2的致密化,此外,SiCW和SiCP的协同作用也有助于材料韧性的提高。  相似文献   

17.
耦合物理场CVI 快速增密C/ C复合材料及动力学探讨   总被引:6,自引:0,他引:6       下载免费PDF全文
采用多元耦合物理场CVI 工艺, 用炭毡作为增强体, 在增强体中设计导电层, 产生温度场和电磁场梯度, 在自行设计的CVI 炉中增密C/ C 复合材料, 对温度、系统压力和气体流量等工艺进行了优化; 采用偏光显微镜研究了热解炭的显微结构; 用X射线衍射研究了材料的石墨化度; 探讨了本工艺中的有内热源和无内热源的二元传热机制, 多元耦合物理场的有机耦合对“消耗传质”的抑制作用, 以及电磁场对沉积的影响和3 种典型的生长模型。研究表明, 多元耦合物理场CVI 增密速度快, 初始密度为0.2 g/ cm3 , 尺寸为260 mm ×60 mm ×20 mm 的增强体, 在920 ℃、4 kPa 条件下沉积20 h , 试样可增密到1.71 g/ cm3 ; 可获得粗糙层结构(RL) 、光滑层结构(SL) 、带状结构(Banded st ructure) 等热解炭的结构, 在960 ℃、0.1 kPa 条件下可获得较高织构的粗糙层结构。   相似文献   

18.
以碳毡为预制体,将SiC粉末、酚醛树脂等搅拌成混合浆液,采用真空吸浆法制备C/SiC复合材料,测定其密度、孔隙率和力学强度,利用扫描电镜(SEM)研究其断裂面的微观结构并分析失效机制。结果表明:真空吸浆两次后C/SiC复合材料的致密性、力学强度随着浆料中SiC含量的增加均呈先增加后减小的变化趋势,其裂纹扩展过程包括纤维/基体脱粘、纤维桥连、纤维摩阻、裂纹偏转、纤维拔出等几种增韧增强机制。综合比较,当浆料中SiC含量为25%(质量分数)时,其致密性和力学性能最好,密度为1.31g/cm3,孔隙率为15.10%,抗弯强度和抗压强度分别达84.04MPa和74.22MPa,材料具有较好的韧性。  相似文献   

19.
利用2.5D SiC纤维预制件,通过前驱体浸渍裂解法(PIP法)制备SiCf/SiC复合材料,通过在第一次浸渍浆料中加入活性Al粉和惰性颗粒SiC粉来提高浸渍效率.研究了活性填料的加入以及纤维表面热解碳层的厚度对材料性能的影响.结果表明,由于Al粉在热解过程中与含碳有机小分子发生化学反应生成新的物相,使得复合材料的力学性能得到了很大的提高,在1200℃经过六个周期的浸渍裂解后,复合材料的三点弯曲强度达到441MPa,比例极限应力达到380MPa.在200~500nm厚度范围内,热解碳的厚度对复合材料的抗弯强度影响不明显.复合材料的弹性模量随着热解碳层厚度的增加而降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号