首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given a set of data points P and a query point q in a multidimensional space, reverse nearest neighbor (RNN) query finds data points in P whose nearest neighbors are q. Reverse k-nearest neighbor (RkNN) query (where k ges 1) generalizes RNN query to find data points whose kNNs include q. For RkNN query semantics, q is said to have influence to all those answer data points. The degree of q's influence on a data point p (isin P) is denoted by kappap where q is the kappap-th NN of p. We introduce a new variant of RNN query, namely, ranked reverse nearest neighbor (RRNN) query, that retrieves t data points most influenced by q, i.e., the t data points having the smallest kappa's with respect to q. To answer this RRNN query efficiently, we propose two novel algorithms, kappa-counting and kappa-browsing that are applicable to both monochromatic and bichromatic scenarios and are able to deliver results progressively. Through an extensive performance evaluation, we validate that the two proposed RRNN algorithms are superior to solutions derived from algorithms designed for RkNN query.  相似文献   

2.
空间对象的反最近邻查询   总被引:4,自引:0,他引:4  
郝忠孝  刘永山 《计算机科学》2005,32(11):115-118
本文在对现有反最近邻查询方法研究的基础上,提出了一种新的索引结构一SRdnn-树;在此基础上提出了基于SRdn矿树的反最近邻查询方法,并给出了该结构上的最近邻查询方法,以及插入和删除方法,第5节实验表明,基于SRdnn-树的反最近邻查询在性能上优于以往查询方法。  相似文献   

3.
基于Voronoi图的反向最近邻查询   总被引:1,自引:1,他引:0       下载免费PDF全文
刘润涛  张佳佳 《计算机工程》2009,35(19):81-82,8
为了解决反向最近邻查询问题,利用Voronoi图及数据集中点的凸包进行反向最近邻查询,通过判断查询点与凸包的位置关系,可去除大量的数据点,并且给出在数据点被加入或删除后,对查询点的反向最近邻变化情况的判断方法与算法。为了便于查询,设计相应的空间存储数据结构。比较分析表明,该方法在处理多个查询点的反向最近邻时有一定的优势。  相似文献   

4.
杨泽雪  郝忠孝 《计算机工程》2014,(1):272-274,279
为解决动态环境中移动点的连续反向最近邻查询问题,将连续反向最近邻查询分为单色和双色2种情况进行研究。利用移动点Voronoi图,分别给出单色连续反向最近邻查询算法、双色连续反向最近邻查询算法以及相关定理,对算法正确性和可终止性进行证明,分析算法时间复杂性。按照移动点Voronoi图的拓扑结构是否改变分为2种情况,分析每种情况下候选所在区域的变化,在变化区域内进行Voronoi图的重构,得到对应的解决方法。在多数情况下,该算法只需生成局部移动点的Voronoi图即可找到结果,减小了连续反向最近邻查询的代价。  相似文献   

5.
动态环境中的反最近邻查询已成为空间查询的研究热点,有效的数据空间削减策略是此类查询的瓶颈。本文首先给出了连续反最近邻CRNN查询的定义,并且深入分析了问题的特点;其次,在综合分析已有削减策略的基础上给出了可用于CRNN查询的空间削减算法。该算法能在降低I/O操作的同时保证结果的精确性,并且不依赖于特定的索引结构和查询算算法。实验表明,该算法能够有效削减掉不包含RNN的结点,能够提高CRNN查询效率。  相似文献   

6.
随着无线通讯技术的发展,移动对象的查询有广阔的应用空间.针对现有反向最近邻算法很多都是基于静态对象的情况,提出了一种新的基于移动对象的反向最近邻的算法--以TPR-tree为索引结构,对原有的半平面修剪策略进行了改进,使其性能优化,并采用过滤验证这两个处理步骤来获取移动查询点的反向最近邻,实现了移动对象的动态反向最近邻的查询.  相似文献   

7.
刘海中  朱庆保 《计算机工程》2007,33(14):190-191
基于多类别监督学习,提出了一种局部自适应最近邻分类器。此方法使用椭球聚类学习方法估计有效尺度,用于拉长特征不明显的维,并限制特征重要的维。在修正的领域中,类条件概率按预期近似为常数,从而得到更好的分类性能。实验结果显示,对多类问题,这是一种有效且鲁棒的分类方法。  相似文献   

8.
连续最近邻查询方法研究   总被引:3,自引:0,他引:3  
本文分析了目前进行连续最近邻查询的几种方法,并由该问题的几何特征入手,提出了基于R-tree的查询算法,可以避免分割点的丢失和高代价的查询,能够有效地完成移动对象的连续最近邻查询.  相似文献   

9.
论文提出一种等和值块扩展最近邻矢量量化码字搜索算法。该算法将码书按和值大小排序分块,并将每一块中间或中间附近的码字的和值作为本码书块的特征和值。编码时,查找与输入矢量和值距离最近的码书块并作为初始匹配码书块。然后在该码书块附近上下扩展搜索相邻码书块中距输入矢量最近的码字。该算法具有无复杂运算的特点,易于VLSI技术实现。仿真结果表明,该算法是一种有效的码字搜索算法。  相似文献   

10.
随着Wi-Fi、RFID等室内定位技术的发展,产生了越来越多的基于室内空间的位置服务需求。目前已有文献提出了针对室内环境的范围查询和最近邻查询,而双色反向最近邻(bichromatic reverse nearest neighbor,BRNN)查询作为常见的空间查询类型,在室内空间中尚未有相关的研究。为此,提出了基于兴趣点集合的兴趣点融合图模型,并提出了基于路径、基于楼层和基于单元的3种剪枝策略,用于在查询处理时削减搜索空间。在兴趣点融合图和剪枝策略的基础上,提出了室内双色反向最近邻(indoor bichromatic reverse nearest neighbor, IBRNN)查询算法Smart。Smart算法通过对兴趣点融合图中的图元素的检查,从而判断与该图元素关联的移动对象是否有可能属于结果集。最后通过实验,对所提算法的有效性和高效性进行了验证。  相似文献   

11.
Batch Nearest Neighbor Search for Video Retrieval   总被引:2,自引:0,他引:2  
To retrieve similar videos to a query clip from a large database, each video is often represented by a sequence of high- dimensional feature vectors. Typically, given a query video containing m feature vectors, an independent nearest neighbor (NN) search for each feature vector is often first performed. After completing all the NN searches, an overall similarity is then computed, i.e., a single content-based video retrieval usually involves m individual NN searches. Since normally nearby feature vectors in a video are similar, a large number of expensive random disk accesses are expected to repeatedly occur, which crucially affects the overall query performance. Batch nearest neighbor (BNN) search is stated as a batch operation that performs a number of individual NN searches. This paper presents a novel approach towards efficient high-dimensional BNN search called dynamic query ordering (DQO) for advanced optimizations of both I/O and CPU costs. Observing the overlapped candidates (or search space) of a pervious query may help to further reduce the candidate sets of subsequent queries, DQO aims at progressively finding a query order such that the common candidates among queries are fully utilized to maximally reduce the total number of candidates. Modelling the candidate set relationship of queries by a candidate overlapping graph (COG), DQO iteratively selects the next query to be executed based on its estimated pruning power to the rest of queries with the dynamically updated COG. Extensive experiments are conducted on real video datasets and show the significance of our BNN query processing strategy.  相似文献   

12.
13.
现有基于近邻图的近似最近邻搜索(ANNS)算法通常将数据库中被检索向量组织成近邻图结构,根据用户设定参数搜索查询向量的近似最近邻。为提升基于近邻图的ANNS算法在给定召回率下的搜索效率,提出一种参数自适应方法AdaptNNS。采集数据库中的被检索向量并对采样结果进行聚类,利用聚类中心向量和最近邻分类器提取查询负载特征,同时将查询负载特征与不同的召回率相结合作为输入特征训练梯度提升决策树(GBDT)模型。在查询处理过程中,根据应用程序指定的召回率获取最终输入特征,并通过GBDT模型预测最优搜索参数,提升ANNS算法的吞吐量。在Text-to-Image、DEEP和Turing-ANNS数据集上的实验结果表明,当达到相同的目标召回率时,AdaptNNS方法相比于Baseline方法最多可将DiskANN和HNSW算法的吞吐量提升1.3倍,具有更高的近似最近邻搜索效率。  相似文献   

14.
反向最近邻查询是空间数据库空间查询的研究热点。目前反向最近邻查询的查询粒度都是基于一维的点,在一些空间物体不能抽象为点的情况下将其抽象为点进行反向最近邻查询,查询结果不能达到一定的精度。该文在分析基于平面线段的最近邻查询和R树结构的基础上提出了一种改进的R树—Rcd树,并给出了基于Rcd树的平面线段反向最近邻查询算法,该方法能实现平面线段的反向最近邻查询。  相似文献   

15.
Li  Xinyu  Hidayat  Arif  Taniar  David  Cheema  Muhammad Aamir 《World Wide Web》2021,24(1):279-296
World Wide Web - Reverse k Nearest Neighbor (RkNN) queries retrieve all objects that consider the query as one of their k most influential objects. Given a set of user U, a set of facilities F and...  相似文献   

16.
为了弥补现有的研究成果无法有效地处理路网环境下基于线段的反k最近邻问题的不足,提出了在路网环境下线段反k最近邻查询方法。该查询方法主要应用于评估查询对象的影响范围。根据路网及Voronoi图的特点提出了网络线段Voronoi图的概念。在静态数据集情况下利用网络线段Voronoi图的性质提出了STA_RVLRk NN算法,查询包括过滤过程和精炼过程两大部分。进一步,在动态数据集的情况下提出了DYN_RVLRk NN算法,查询分为空间线段对象增加和删除两种情况,并对不同的情况给出了相应的算法,得到查询结果集。理论研究和实验表明,所提算法能有效地处理路网中基于线段的反k最近邻问题。  相似文献   

17.
将查询点作为Delaunay图的一个生成点,利用Delaunay图的生成点与其邻接生成点之间的关系,在查询点的邻接生成点集(元素个数小于等于6)中计算数据集中给定点的反向最近邻。把伴随Delaunay图增量生成过程产生的Delaunay树作为查询索引结构,该结构能存储Delaunay图,在数据点插入和删除时维护Delaunay图的拓扑结构。  相似文献   

18.
反向最近邻查询是空间数据库空间查询的研究热点。目前反向最近邻查询的查询粒度都是基于一维的点.在一些空间物体不能抽象为点的情况下将其抽象为点进行反向最近邻查询,查询结果不能达到一定的精度。该文在分析基于平面线段的最近邻查询和R树结构的基础上提出了一种改进的R树-Rcd树,并给出了基于Rcd树的平面线段反向最近邻查询算法.该方法能实现平面线段的反向最近邻查询。  相似文献   

19.
Many data centers have archived a tremendous amount of data and begun to publish them on the Web. Due to limited resources and large amount of service requests, data centers usually do not directly support high-cost queries. On the other hand, users are often overwhelmed by the huge data volume and cannot afford to download the whole data sets and search them locally. To support high-dimensional nearest neighbor searches in this environment, the paper develops a multi-level approximation scheme. The coarsest-level approximations are stored locally and searched first. The result is then refined gradually via accesses to remote data centers. Data centers need only to deliver data items or their precomputed finer level approximations by their identifiers. The searching process is usually long in this environment, since it involves remote sites. This paper describes an online search process: the system periodically reports a data item and a positive integer M. The reported item is guaranteed to be one of the M nearest neighbors of the query one. The paper proposes two algorithms to minimize M in each period. Experiments show that one of them performs similarly as a theoretical a posteriori algorithm and significantly outperforms the online extensions of two state-of-the-art nearest neighbor search methods. Received 25 July 2000 / Revised 25 July 2001 / Accepted in revised form 16 October 2001 Correspondence and offprint requests to: Xiaoyang Sean Wang, Department of Information and Software Engineering, George Mason University, Fairfax, VA 22030, USA. Email: xywang@gmu.eduau  相似文献   

20.
本文针对大规模高维数据近邻检索中的瓶颈问题,提出基于向量量化的一种检索方法—簇内乘积量化树方法.该方法运用向量量化和乘积量化的多层树状结构高效表征大规模高维数据集,与现有方法相比降低了索引表空桶率;其次提出基于贪心队列的近邻簇筛选方法减小了计算复杂度,加快了近邻检索速度;最后提出面量化方法用于近似计算候选数据集向量与查询向量间的距离,与点量化和线量化方法相比量化误差更小,提高了近邻查询准确率.本文提出的簇内乘积量化树算法在算子Sift和Gist描述的大规模高维数据集上与乘积量化树技术相比,首次召回准确率提高了57.7%,索引表空桶率降低幅度在50%以上,与局部优化乘积量化技术相比,查全率高达97%,而查询时间却仅需原来的1/9.实验结果表明本文提出的基于簇内乘积量化的近邻方法提升了近邻检索性能,为大规模高维数据集近邻检索提供了理论支持.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号