首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platelet-derived growth factor-BB (PDGF-BB) plays important roles in regenerating damaged tissue. In this study we investigated the effects of a tissue-engineered bone combined with recombinant human PDGF-BB (rhPDGF-BB), bone marrow stem cells (BMSCs) and β–tricalcium phosphate (β-TCP) to repair critical-size calvarial bone defects in rat. Proliferation and osteogenic differentiation of BMSCs treated with different concentration rhPDGF-BB (0, 10, and 50 ng/ml) was evaluated by MTT, alkaline phosphatase (ALP) activity, alizarin red staining and real-time quantitative PCR (RT-qPCR) analysis of osteogenic gene. BMSCs were then combined with rhPDGF-BB-loaded β-TCP and transplanted into 5 mm calvarial bone defects. The new bone formation and mineralization was evaluated by micro-computerized tomography (Micro-CT) and histological analysis at week 8 after operation. It was observed that the proliferation of BMSCs treated with rhPDGF-BB was enhanced with a time- and dose- dependent manner. There were increased ALP activity, mineralized deposition and elevated mRNA levels of osteogenic gene for BMSCs treated with rhPDGF-BB, particularly in the 50 ng/ml group. Histological analysis showed new bone formation and mineralization in the rhPDGF-BB/BMSCs/β-TCP group was significantly higher than BMSCs/β-TCP, rhPDGF-BB/β-TCP, and β-TCP alone group (P < 0.05). In conclusion, rhPDGF-BB/BMSCs/β-TCP is a promising tissue-engineered bone for craniofacial bone regeneration.  相似文献   

2.
The objective of the present study was to investigate the effect of a fabricated combination of poly-?-caprolactone (PCL)–biphasic calcium phosphate (BCP) with the modified melt stretching and multilayer deposition (mMSMD) technique on human dental pulp stem cell (hDPSC) differentiation to be osteogenic like cells for bone regeneration of calvarial defects in rabbit models. hDPSCs extracted from human third molars were seeded onto mMSMD PCL-BCP scaffolds and the osteogenic gene expression was tested prior to implantation in vivo. Two standardized 11?mm in diameter circular calvarial defects were created in 18 adult male New Zealand white rabbits. The rabbits were divided into 4 groups: (1) hDPSCs seeded in mMSMD PCL-BCP scaffolds; (2) mMSMD PCL-BCP scaffolds alone, (3) empty defects and (4) autogenous bone (n?=?3 site/time point/groups). After two, four and eight weeks after the operation, the specimens were harvested for micro-CT including histological and histomorphometric analysis. The explicit results presented an interesting view of the bioengineered constructs of hDPSCs in PCL-BCP scaffolds that increased the newly formed bone compared to the empty defect and scaffold alone groups. The results demonstrated that hDPSCs combined with mMSMD PCL-BCP scaffolds may be an augmentation material for bony defect.  相似文献   

3.
The adequate regeneration of large bone defects is still a major problem in orthopaedic surgery. Synthetic bone substitute materials have to be biocompatible, biodegradable, osteoconductive and processable into macroporous scaffolds tailored to the patient specific defect. Hydroxyapatite (HA) and tricalcium phosphate (TCP) as well as mixtures of both phases, biphasic calcium phosphate ceramics (BCP), meet all these requirements and are considered to be optimal synthetic bone substitute materials. Rapid prototyping (RP) can be applied to manufacture scaffolds, meeting the criteria required to ensure bone ingrowth such as high porosity and defined pore characteristics. Such scaffolds can be used for bone tissue engineering (BTE), a concept based on the cultivation of osteogenic cells on osteoconductive scaffolds. In this study, scaffolds with interconnecting macroporosity were manufactured from HA, TCP and BCP (60 wt% HA) using an indirect rapid prototyping technique involving wax ink-jet printing. ST-2 bone marrow stromal cells (BMSCs) were seeded onto the scaffolds and cultivated for 17 days under either static or dynamic culture conditions and osteogenic stimulation. While cell number within the scaffold pore system decreased in case of static conditions, dynamic cultivation allowed homogeneous cell growth even within deep pores of large (1,440 mm3) scaffolds. Osteogenic cell differentiation was most advanced on BCP scaffolds in both culture systems, while cells cultured under perfusion conditions were generally more differentiated after 17 days. Therefore, scaffolds manufactured from BCP ceramic and seeded with BMSCs using a dynamic culture system are the method of choice for bone tissue engineering.  相似文献   

4.
Smart matrices are required in bone tissue-engineered grafts that provide an optimal environment for cells and retain osteo-inductive factors for sustained biological activity. We hypothesized that a slow-degrading heparin-incorporated hyaluronan (HA) hydrogel can preserve BMP-2; while an arterio–venous (A–V) loop can support axial vascularization to provide nutrition for a bio-artificial bone graft. HA was evaluated for osteoblast growth and BMP-2 release. Porous PLDLLA–TCP–PCL scaffolds were produced by rapid prototyping technology and applied in vivo along with HA-hydrogel, loaded with either primary osteoblasts or BMP-2. A microsurgically created A–V loop was placed around the scaffold, encased in an isolation chamber in Lewis rats. HA-hydrogel supported growth of osteoblasts over 8 weeks and allowed sustained release of BMP-2 over 35 days. The A–V loop provided an angiogenic stimulus with the formation of vascularized tissue in the scaffolds. Bone-specific genes were detected by real time RT-PCR after 8 weeks. However, no significant amount of bone was observed histologically. The heterotopic isolation chamber in combination with absent biomechanical stimulation might explain the insufficient bone formation despite adequate expression of bone-related genes. Optimization of the interplay of osteogenic cells and osteo-inductive factors might eventually generate sufficient amounts of axially vascularized bone grafts for reconstructive surgery.  相似文献   

5.
The reconstruction of large bone defects after injury or tumor resection often requires the use of bone substitution. Artificial scaffolds based on synthetic biomaterials can overcome disadvantages of autologous bone grafts, like limited availability and donor side morbidity. Among them, scaffolds based on nanofibers offer great advantages. They mimic the extracellular matrix, can be used as a carrier for growth factors and allow the differentiation of human mesenchymal stem cells. Differentiation is triggered by a series of signaling processes, including integrin and bone morphogenetic protein (BMP), which act in a cooperative manner. The aim of this study was to analyze whether these processes can be remodeled in artificial poly-(l)-lactide acid (PLLA) based nanofiber scaffolds in vivo. Electrospun matrices composed of PLLA-collagen type I or BMP-2 incorporated PLLA-collagen type I were implanted in calvarial critical size defects in rats. Cranial CT-scans were taken 4, 8 and 12 weeks after implantation. Specimens obtained after euthanasia were processed for histology and immunostainings on osteocalcin, BMP-2 and Smad5. After implantation the scaffolds were inhomogeneously colonized and cells were only present in wrinkle- or channel-like structures. Ossification was detected only in focal areas of the scaffold. This was independent of whether BMP-2 was incorporated in the scaffold. However, cells that migrated into the scaffold showed an increased ratio of osteocalcin and Smad5 positive cells compared to empty defects. Furthermore, in case of BMP-2 incorporated PLLA-collagen type I scaffolds, 4 weeks after implantation approximately 40?% of the cells stained positive for BMP-2 indicating an autocrine process of the ingrown cells. These findings indicate that a cooperative effect between BMP-2 and collagen type I can be transferred to PLLA nanofibers and furthermore, that this effect is active in vivo. However, this had no effect on bone formation. The reason for this seems to be an unbalanced colonization of the scaffolds with cells, due to insufficient pore size.  相似文献   

6.
Tissue engineering techniques have been proven effective in bone regeneration and repairing load-bearing bone defects. Previous studies, however, have heretofore been limited to the use of slowdegradable or natural biomaterials as scaffolds. There are, however, no reports on using biodegradable, synthetic beta-tricalcium phosphate (β-TCP) as scaffolds to repair weight-bearing bone defects in large animals. In the present study, highly porous β-TCP scaffolds prepared by the polymeric sponge method were used to repair goat tibial defects. Fifteen goats were randomly assigned to one of three groups, and a 26 mm-long defect at the middle part of the right tibia in each goat was created. In Group A (six goats), a porous β-TCP ceramic cylinder that had been loaded with osteogenically induced autologous bone marrow stromal cells (BMSCs) was implanted in the defect of each animal. In Group B (six goats), the same β-TCP ceramic cylinder without any cells loaded was placed in the defect. In Group C (three goats), the defect was left untreated. In Group A, bony union can be observed by gross view, X-ray and micro-computed tomography (Micro-CT) detection, and histological observation at 32 weeks post-implantation. The implanted β-TCP scaffolds were almost completely replaced by tissue-engineered bone. Bone mineral density in the repaired area of Group A was significantly higher (p < 0.05) than that of Group B, in which scant new bone was formed in each defect and the β-TCP hadn’t been completely resorbed at 32 weeks. Moreover, the tissue-engineered bone of Group A had similar biomechanical properties as that of the normal left tibia in terms of bending strength and Young’s modulus (p > 0.05). In Group C, little or no new bone was formed, and non-union occurred, showing that the 26 mm segmental defect of the goat tibia was critical sized at 32 weeks. Thus, it can be concluded that the mechanical properties of the BMSCs/β-TCP composites could be much improved via tissue engineering approach and β-TCP might be used to repair the weight-bearing segmental defects of goat tibias. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Mandibular defects, caused by congenital, pathological or iatrogenic insults, can significantly affect patient quality of life. The reconstruction of mandible has recently gained the interest of clinical and tissue engineering researchers. The purpose of this study was to evaluate the effectiveness of three-dimensional (3-D) cultured autologous grafts prepared using bone marrow-derived mesenchymal stem cells (BMSCs) combined with demineralized bone matrix (DBM) scaffolds for the restoration of mandibular defects. Cylindrical defects were created in the mandibular body of minipigs and filled with 3D-cultured BMSCs/DBM autografts, 2D-cultured BMSCs/DBM autografts, DBM material (without cells), or were left unfilled (blank). Using computed tomographic (CT) imaging and histological staining, we found that treatment of mandibular defects using 3-D cultured BMSCs/DBM autografts offered improvements in bone formation over both 2-D cultured autografts and cell-free DBM scaffolds. We found increased osteoid formation in 3D and 2D cultures, with more osteogenic cells present in the 3D constructs. We suggest that 3-D cultured homograft BMSCs combined with DBM scaffolds represents a new strategy for bone reconstruction, with potential future clinical applicability.  相似文献   

8.
Present study aimed to investigate and compare effectiveness of porous chitosan alone and in combination with insulin like growth factor-1 (IGF-1) and bone morphogenetic protein-2 (BMP-2) in bone healing. Highly porous (85 ± 2%) with wide distribution of macroporous (70–900 μm) chitosan scaffolds were fabricated as bone substitutes by employing a simple liquid hardening method using 2% (w/v) chitosan suspension. IGF-1 and BMP-2 were infiltrated using vacuum infiltration with freeze drying method. Adsorption efficiency was found to be 87 ± 2 and 90 ± 2% for BMP-2 and IGF-1 respectively. After thorough material characterization (pore details, FTIR and SEM), samples were used for subsequent in vivo animal trial. Eighteen rabbit models were used to evaluate and compare control (chitosan) (group A), chitosan with IGF-1 (group B) and chitosan with BMP-2 (group C) in the repair of critical size bone defect in tibia. Radiologically, there was evidence of radiodensity in defect area from 60th day (initiated on 30th day) in groups B and C as compared to group A and attaining nearly bony density in most of the part at day 90. Histological results depicted well developed osteoblastic proliferation around haversian canal along with proliferating fibroblast, vascularization and reticular network which was more pronounced in group B followed by groups C and A. Fluorochrome labeling and SEM studies in all groups showed similar outcome. Hence, porous chitosan alone and in combination with growth factors (GFs) can be successfully used for bone defect healing with slight advantage of IGF-1 in chitosan samples.  相似文献   

9.
Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration with different biomaterials. Nerve autografting is the most common surgical procedure currently used to repair nerve defects as a gold standard. To address the disadvantages of limited availability of donor nerves and donor site morbidity, we have fabricated chitosan conduits and seeded them combined with bone marrow mesenchymal stem cells (BMSCs) as an alternative. The conduits were tested for efficacy in bridging the critical gap (8 mm) in sciatic nerves of adult rats, which including sciatic nerve function index (SFI), ethology observation, histologic detection, immunohistochemistry detection. The BMSCs were tested for survival rate and differentiation by fluorescence labeling. Six weeks after operation, the SFI, average regenerated fiber density, and fiber diameter in nerves bridged with BMSCs were similar to those treated with autograft, but significantly higher than those bridged with chitosan conduits only (P < 0.05) because of the differentiation of BMSCs. Evidence is thus provided to support the effect of using multi-channel chitosan conduits seeded with BMSCs to treat critical defects in peripheral nerves. This provides the basis to pursue chitosan and BMSCs combination is an effective method to improve the nerve healing, which may be used as an alternative to the conventional nerve autografts.  相似文献   

10.
The development of suitable bioactive three-dimensional scaffold for the promotion of bone regeneration is critical in bone tissue engineering. The purpose of this study was to investigate in vivo osteogenesis of the porous strontium-doped calcium polyphosphate (SCPP) scaffolds for bone repair, as well as the relationship between osteogenic properties of SCPP scaffolds and the secretion of bFGF and VEGF from osteoblasts stimulated by SCPP. Besides, the advantages of scaffolds seeded with mesenchymal stem cells (MSCs) for bone repair were also studied. Firstly, the bone repair evaluation of scaffolds was performed on a rabbit segmental bony defects model over a period of 16 weeks by histology combined with X-ray microradiography. And then, in order to avoid the influence from the other factors such as hypoxia which emerge in vivo study and affect the secretion of VEGF and bFGF from host cells, human osteoblast-like cells (MG63) were seeded to SCPP, CPP and HA scaffolds in vitro to determine the ability of these scaffolds to stimulate the secretion of angiogenic growth factors (VEGF and bFGF) from MG63 and further explore the reason for the better osteogenic properties of SCPP scaffolds. The histological and X-ray microradiographic results showed that the SCPP scaffolds presented better osteogenic potential than CPP and HA scaffolds, when combined with MSCs, the SCPP scaffolds could further accelerate the bone repair. And the amounts of VEGF measured by ELISA assay in SCPP, CPP and HA groups after cultured for 7 days were about 364.989 pg/mL, 244.035 pg/mL and 232.785 pg/mL, respectively. Accordingly, the amounts of bFGF were about 27.085 pg/mL, 15.727 pg/mL and 8.326 pg/mL. The results revealed that the SCPP scaffolds significantly enhanced the bFGF and VEGF secretion compared with other scaffolds. The results presented in vivo and in vitro study demonstrated that the SCPP could accelerate bone formation through stimulating the secretion of VEGF and bFGF from osteoblasts, making it attractive for bone regeneration.  相似文献   

11.
This work evaluates the suitability of biphasic calcium phosphate (BCP) granules (β-TCP/HA 70:30) as potential carriers for cell-guided bone therapy. The BCP granules were obtained by synthesis in the presence of wax, thermal treatment, crushing and sieving and characterized by scanning electron microscopy (SEM), X-ray diffraction and Fourier transform infrared spectroscopy. The cytocompatibility of the BCP granules was confirmed by a multiparametric cytotoxicity assay. SEM analysis showed human bone cell adhesion and migration after seeding onto the material. Rat subcutaneous xenogeneic grafting of granules associated to human bone cells revealed a more accentuated moderate chronic inflammatory infiltrate, without signs of a strong xenoreactivity. Histomorphometrical analysis of bone repair of defects in rat skulls (∅ = 5 mm) has shown that bone cell associated-BCP and autograft promoted a two- and threefold increase, respectively, on new bone formation after 45 days, as compared to BCP alone and blood clot. The increase in bone repair supports the suitability the biocompatible (70:30) BCP granules as injectable and mouldable scaffolds for human cells in bone bioengineering.  相似文献   

12.
Although bone defects can be restored spontaneously,bone reconstruction with sufficient strength and volume continues to be a challenge in clinical practices.In recent years,the use of a variety of biomaterials with bioactivity has been attempted to compensate for this limitation.Herein,we fabricated a pDNA(encoding for BMP-2)-loaded asymmetrically porous polycaprolactone(PCL)/Pluronic F127 membrane as a bioactive guided bone regeneration(GBR)membrane,using a modified immersion-precipitation method.It was observed that the GBR membrane allows continuous release of pDNA for more than20 weeks.The pDNA was sufficiently transfected into human bone marrow stem cells(h BMSCs)without significant cytotoxicity and the gene-transfected cells showed prolonged synthesis of BMP-2.From in vitro osteogenic differentiation and in vivo animal studies,the effective induction of osteogenic differentiation of h BMSCs and enhanced bone regeneration by the pDNA-loaded asymmetrically porous PCL/Pluronic F127 membrane was observed,suggesting that the pDNA-loaded membrane as a bioactive GBR membrane can be an alternative therapeutic technique for effective bone regeneration.  相似文献   

13.
Hyaluronic acid (HA) improves the quality of microfracture-mediated cartilage regeneration by recruiting bone marrow mesenchymal stem cells (BMSCs) and chondrocytes. An HA-enriched scaffold was investigated to enhance chondrogenesis by BMSCs and chondrocytes in articular cartilage tissue engineering with the microfracture technique. Pre-fabricated porous PGP2/1 [poly(d,l-lactic acid-co-glycolic acid)(75/25) blended with polyethylenimine-grafted-poly(d,l-lactic acid-co-glycolic acid)(50/50) in a 2:1 ratio] scaffolds with 72.7% porosity and a 200–400-μm pore size were generated via the gas foaming/salt leaching method. HA-modified porous PGP2/1 (HA-PGP) scaffolds were used as the HA-enriched microenvironment. The mRNA levels of chondrogenic marker genes (SOX-9, aggrecan and type II collagen) were quantified using real-time polymerase chain reaction (PCR). Sulfated glycosaminoglycan (sGAG) deposition was detected by Alcian blue staining and dimethylmethylene blue (DMMB) assays. The expression of the chondrogenic genes type II collagen and aggrecan was significantly elevated in chondrocytes and BMSCs grown on HA-PGP scaffolds after seven days of culturing. BMSCs cultured in HA-PGP scaffolds showed increased sGAG content after four weeks of culturing. These results demonstrate that HA-PGP scaffolds provide a microenvironment that induces chondrogenesis by chondrocytes and BMSCs, which may be beneficial for regenerating cartilage-like tissue in vivo with the microfracture technique.  相似文献   

14.
Bone morphogenetic protein-2 (BMP-2) is a key bone morphogenetic protein, and poly(lactic-co-glycolic acid) (PLGA) has been widely used as scaffold for clinical use to carry treatment protein. In the previous studies, we have synthesized BMP-2-related peptide (P24) and found its capacity of inducing bone regeneration. In this research, we have synthesized a new amphiphilic peptide Ac-RADA RADA RADA RADA S[PO4]KIPKASSVPTELSAISTLYLDDD-CONH2 (RADA16-P24) with an assembly peptide RADA16-Ion the P24 item of BMP2 to form divalent ion-induced gelatin. Two methods of physisorption and chemical cross-linking were used to bind RADA16-P24 onto the surface of the copolymer PLGA to synthesize RADA16-P24–PLGA, and its capacity of attaching bone marrow stromal cells (BMSCs) was evaluated in vitro and inducing ectopic bone formation was examined in vivo. In vitro our results demonstrated that RADA16-P24–PLGA copolymer prepared by physisorbing or prepared by chemical cross-linking had a peptide binding rate of (2.0180 ± 0.5296)% or (10.0820 ± 0.8405)% respectively (P < 0.05). In addition the BMSCs proliferated vigorously in the RADA16-P24–PLGA biomaterials. Significantly the percentage of BMSCs attached to RADA16-P24–PLGA composite prepared by chemical cross-linking and physisorbing were (71.4 ± 7.5) % or (46.7 ± 5.8) % (P < 0.05). The in vivo study showed that RADA16-P24–PLGA chemical cross-linking could better induce ectopic bone formation compared with RADA16-P24–PLGA physisorbing and PLGA. It is concluded that the PLGA copolymer is a good RADA16-P24 carrier. This novel RADA16-P24–PLGA composite has strong osteogenic capability.  相似文献   

15.
The major goal of this research was to investigate and characterize the deposition of a biomimetic apatite-like coating onto the surface of 3D porous calcium-silicate-hydrate scaffolds with suitable bioactivity for potential application in bone tissue engineering. Basically, Portland cement, water, sand and lime were mixed for preparing the slurry which was poured into molds, and fine aluminum powder was added as foaming agent resulting on the formation of porous 3D structures. After aging for 28 days, these porous inorganic scaffolds were immersed in calcium chloride supersaturated solution in PBS for 7 days at 37 °C for the biomimetic layer deposition. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier Transformed Infrared Spectroscopy (FTIR) techniques were used in order to characterize the porous scaffolds and the apatite-like biomimetic coating. The results have showed that 3D constructs were successfully produced with interconnected porosity, compressive strength and cytocompatibility appropriate for potential use as an alternative in trabecular bone repair.  相似文献   

16.
A combination of bioceramics and polymeric nanofibers holds promising potential for bone tissue engineering applications. In the present study, hydroxyapatite (HA), bioactive glass (BG), and tricalcium phosphate (TCP) particles were coated on the surface of electrospun poly(L-lactic acid) (PLLA) nanofibers, and the capacity of the PLLA, BG-PLLA, HA-PLLA, HA-BG-PLLA, and TCP-PLLA scaffolds for bone regeneration was investigated in rat critical-size defects using digital mammography, multislice spiral-computed tomography (MSCT) imaging, and histological analysis. Electrospun scaffolds exhibited a nanofibrous structure with a homogeneous distribution of bioceramics along the surface of PLLA nanofibers. A total of 8 weeks after implantation, no sign of complication or inflammation was observed at the site of the calvarial bone defect. On the basis of imaging analysis, a higher level of bone reconstruction was observed in the animals receiving HA-, BG-, and TCP-coated scaffolds compared to an untreated control group. In addition, simultaneous coating of HA and BG induced the highest regeneration among all groups. Histological staining confirmed these findings and also showed an efficient osseointegration in HA-BG-coated nanofibers. On the whole, it was demonstrated that nanofibrous structures could serve as an appropriate support to guide the healing process, and coating their surface with bioceramics enhanced bone reconstruction. These bioceramic-coated scaffolds can be used as new bone-graft substitutes capable of efficiently inducing osteoconduction and osseointegration in orthopedic fractures and defects.  相似文献   

17.
In this study, a chitosan conduit loaded with bone marrow stromal cells (BMSCs) was developed to bridge the gap in the transected spinal cord of adult rats, and the nerve repair outcomes were evaluated by functional and histological techniques at 12 weeks after implantation. As compared to chitosan conduits alone, incorporation of BMSCs within chitosan conduits yielded additional improving effects on nerve regeneration and function restoration. The measurements with the Basso, Beattie and Bresnahan locomotor rating scale or of motor evoked potentials indicated that motor functional recovery was enhanced; retrograde tracing confirmed that the ascending tract was regenerated and the neural pathway was established; and histological analyses revealed that axon growth and remyelination in the regenerated nerve was promoted. The three-dimensional reconstruction showed that the chitosan conduit loaded with BMSCs significantly reduced the spinal cord cavity volume at the injured site. Taken together, the results collectively suggest that implantation with BMSCs-loaded chitosan conduits may become a promising approach to the repair of spinal cord injury.  相似文献   

18.
The application of piezoelectric nanoparticles with shape memory polymer (SMP) to 3D-printed piezoelectric scaffolds for bone defect repair is an attractive research direction. However, there is a significant difference in dielectric constants between the piezoelectric phase and polymer phase, limiting the piezoelectric property. Therefore, novel piezoelectric acrylate epoxidized soybean oil (AESO) scaffolds doped with piezoelectric Ag-TMSPM-pBT (ATP) nanoparticles (AESO-ATP scaffolds) are prepared via digital light procession 3D-printing. The Ag-TMSPM-pBT nanoparticles improve the piezoelectric properties of the AESO scaffolds by TMSPM covalent functionalization and conductive Ag nanoparticles. The AESO scaffolds doped with 10 wt% Ag-TMSPM-pBT nanoparticles (AESO-10ATP scaffolds) exhibit promising piezoelectrical properties, with a piezoelectric coefficient (d33) of 0.9 pC N−1 and an output current of 146.4 nA, which are close to the piezoelectric constants of bone tissue. In addition, these scaffolds exhibit good shape memory function and can quickly recover their original shape under near-infrared (NIR) light irradiation. The results of osteogenesis capability evaluation indicate that the AESO-10ATP scaffolds can promote osteogenic differentiation of BMSCs in vitro and bone defect repair in vivo, indicating the 3D-printed AESO-10ATP piezoelectric scaffolds may have great application potential for bone regeneration.  相似文献   

19.
Three-dimensional (3D) bioprinting, which is being increasingly used in tissue engineering, requires bioinks with tunable mechanical properties, biological activities, and mechanical strength for in vivo implantation. Herein, a growth-factor-holding poly(organophosphazene)-based thermo-responsive nanocomposite (TNC) bioink system is developed. The mechanical properties of the TNC bioink are easily controlled within a moderate temperature range (5–37 °C). During printing, the mechanical properties of the TNC bioink, which determine the 3D printing resolution, can be tuned by varying the temperature (15–30 °C). After printing, TNC bioink scaffolds exhibit maximum stiffness at 37 °C. Additionally, because of its shear-thinning and self-healing properties, TNC bioinks can be extruded smoothly, demonstrating good printing outcomes. TNC bioink loaded with bone morphogenetic protein-2 (BMP-2) and transforming growth factor-beta1 (TGF-β1), key growth factors for osteogenesis, is used to print a scaffold that can stimulate biological activity. A biological scaffold printed using TNC bioink loaded with both growth factors and implanted on a rat calvarial defect model reveals significantly improved bone regenerative effects. The TNC bioink system is a promising next-generation bioink platform because its mechanical properties can be tuned easily for high-resolution 3D bioprinting with long-term stability and its growth-factor holding capability has strong clinical applicability.  相似文献   

20.
This study evaluated whether the combination of biodegradable β-tricalcium phosphate (β-TCP) scaffolds with recombinant human bone morphogenetic protein-2 (rhBMP-2) or platelet-rich plasma (PRP) could accelerate bone formation and increase bone height using a rabbit non-through cranial bone defect model. Four non-through cylindrical bone defects with a diameter of 8-mm were surgically created on the cranium of rabbits. β-TCP scaffolds in the presence and absence of impregnated rhBMP-2 or PRP were placed into the defects. At 8 and 16 weeks after implantation, samples were dissected and fixed for analysis by microcomputed tomography and histology. Only defects with rhBMP-2 impregnated β-TCP scaffolds showed significantly enhanced bone formation compared to non-impregnated β-TCP scaffolds (P < 0.05). Although new bone was higher than adjacent bone at 8 weeks after implantation, vertical bone augmentation was not observed at 16 weeks after implantation, probably due to scaffold resorption occurring concurrently with new bone formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号