共查询到20条相似文献,搜索用时 15 毫秒
1.
人工神经网络在电力系统短期负荷预测中的应用 总被引:5,自引:0,他引:5
为准确预测电力系统短期负荷,针对BP神经网络的固有缺陷,改进了基本BP算法,并采用遗传算法设计和优化神经网络结构参数,在此基础上建立了工作日负荷预报模型和假日负荷预报模型。负荷预测仿真表明,本文所提出的算法在预测精度和收敛速度方面均得到了改进。 相似文献
2.
人工神经网络在电力系统短期负荷预测中的应用 总被引:6,自引:0,他引:6
提出了基于多层前馈神经网络误差择向传播(BP)模型的电力系统短期负荷预测的方法,根据电力系统短期负荷变化的特性建立了既反映电力系统负荷连续性、周期性及其负荷的变化趋势,又包含天气变化对系统负荷的影响的日负荷模型,以此作为对BP神经网络进行训练的向量样本集。通过实例表明ANN应用于电力系统短期负荷预测的是平行的,有效的,其预报结果比传统的负荷预测方法更准确。 相似文献
3.
改进的BP算法及其在短期负荷预测中的应用 总被引:2,自引:0,他引:2
提出BP的改进算法,采取初始化样本数据,改变隐节点作用函数形式,增加节点函数的陡度、自适应调整学习率等措施提高了学习速度。应用改进的BP算法进行的短期负荷预测,验证了改进措施的有效性,取得了满意的预测结果。 相似文献
4.
5.
一种改进的短期负荷预测方法 总被引:1,自引:0,他引:1
采用三层BP型人工神经网络来建立短期负荷预测模型,将影响负荷的主要因素:系统的基本负荷、温度的差异、天气的改变和日期的类型(工作日与节假日)作为数据样本,进行网络的自我训练和学习,并且在训练和学习的过程中引入误差反方向传播算法(即BP算法)来修正神经网络的连接权重,从而达到对负荷预测模型的改良和完善,进一步贴近实际的负荷变化。同时,将因电力线路或设备的检修损失的负荷量也作为影响因素进行了考虑,从而得出更精确的预测负荷值。在实际的负荷预测算例中,上述的预测思路得到了较好的印证,其预测的精度也较高。 相似文献
6.
遗传神经网络在电力系统短期负荷预测中的应用 总被引:28,自引:9,他引:19
为了克服传统BP神经网络中存在的一些缺陷,实现准确、快速预测电力系统负荷的目的,作者通过将遗传算法与神经网络结合,构造了一种遗传神经网络来进行电力系统短期负荷预测,方法的思路是:首先,利用遗传算法有指导地计算神经隐层节点数,从而确定一个较合理的神经网络结构;其次,由遗传算法从初始权值的解群中选取出一个优秀的初始权值,克服初始权值选取的盲目性;最后,将得到的神经网络结构和优秀的初始权值结合起来,利用改进的BP算法进行电力系统短期负荷预测,仿真计算表明该方法达到了提高预测精度和改善网络性能的要求。 相似文献
7.
8.
基于人工神经网络原理,设计了一个三层的BP网络模型。充分利用了神经网络高度非线性建模能力,实现电力系统的短期负荷预测。文中对样本数据进行了预处理,以及在算法中引入附加冲量项,以提高训练速度。预测仿真结果证明使用人工神经网络方法进行短期负荷预测是可行的。 相似文献
9.
设计了一个三层神经网络模型来实现电力系统的短期负荷预测。用了改进的BP学习算法,以提高训练的收敛速度。预测仿真结果表明,所设计的神经网络是可以进行短期负荷预测的。 相似文献
10.
应用人工神经网络算法进行短期负荷预测 总被引:3,自引:0,他引:3
针对电力负荷预测对Kohonen网的聚类能力和BP网的非线性拟合功能进行了讨论,提出了一种建立负荷日类型模型的方法,并在此基础上用Kohonen网和BP网组合而成的神经网络模型来进行短期负荷预测,提高了负荷预测的精度。 相似文献
11.
论述了人工神经网络预测电力系统负荷的方法和步骤,并以BP神经网络在石嘴山地区短期负荷预测中的应用为例,探讨负荷预测的重要性。 相似文献
12.
针对电力系统短期负荷预测的特点,以及人工神经网络的自学习和复杂的非线性拟合能力,将人工神经网络的BP、Elman、RBF三种模型用于短期负荷预测,建立了短期电力负荷预测模型,综合考虑气象、天气等影响负荷因素进行短期负荷预测.某电网实际预测结果表明,RBF比BP、Elman有更好的预测精度,更快的速度. 相似文献
13.
本文提出了应用人工神经网络进行电力系统短期负荷预测的方法。负荷按照每星期各日来分类,共七种模式,学习样本采取每星期中相同类型日。对原始数据进行伪数据的清除,提高了预测的精度。对于那些人们可以预计到的随机干扰,应用专家系统给予考虑。通过对银川供电局负荷的实际预测,证明本文所述方法能够实际应用。 相似文献
14.
人工神经网络在华北电网负荷预测中的应用 总被引:5,自引:0,他引:5
文章介绍了人工神经网络在华北电网短期负荷预测中的研究与应用,这种方法可以考虑气象因素在短期负荷预测中的影响,它能够准确地预测出华北电网的负荷,预测的结果表明这种方法在短期负荷预测中可以使精度提高0.9%。 相似文献
15.
结合山西省电力系统的特点,提出3种比较适用的短期负荷预测算法。通过对实际系统的试验表明,这几种算法均具有较高的预测精度,可以满足系统运行的要求。 相似文献
16.
17.
根据负荷的不确定性和非线性的特点 ,采用了ANN和AFS理论进行STLF ,分两个步骤 :在ANN中引入了平滑因子和遗忘因子 ,来加快收敛速度并解决ANN的遗忘问题 ;在AFS中对基本负荷预测值进行修正 ,引进不平均的隶属函数来体现负荷变化对温度的敏感性。实践表明该模型具有速度快、预测精度高等优点 相似文献
18.
根据负荷的不确定性和非线性的特点,采用了ANN和AFS理论进行STLF,分两个步骤:在ANN中引入了平滑因子和遗忘因子,来加快收敛速度并解决ANN的遗忘问题;在AFS中对基本负荷预测值进行修正,引进不平均的隶属函数来体现负荷变化对温度的敏感性。实践表明该模型具有速度快、预测精度高等优点。 相似文献
19.
应用人工神经网络进行短期负荷预测 总被引:11,自引:5,他引:11
本文提出了一种应用人工神经网络进行电力系统短期负荷预测的方法。负荷按照每周各日进行分类,共七种模式,学习样本选取每周中的相同类型日。为了提高预测精度,对原始数据中的伪数据进行清除,对于那些可以预料到的随机干扰,应用专家系统原理予以处理。通过对银川供电局负荷的实际预测,表明本文所提供方法可以实际应用。 相似文献
20.
提出了一种基于人工神经网络的电力系统短期负荷预测技术,该方法在计及气温因素对负荷预测影响的基础上,将神经网络同一种较为新颖的预报模型相结合,因而具有较高的预测精度。计算实例证明了该法的可行性和有效性。 相似文献