首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
La1− y Sr y Fe1− x Al x O3−δ perovskites were studied as potential materials for solid-oxide fuel cell (SOFC) cathodes. The phase relations in the LaFeO3–SrFeO3−δ–LaAlO3 system were investigated by X-ray powder diffraction analysis. The defect structure of the La1− y Sr y Fe1− x Al x O3−δ perovskites was investigated by Mössbauer spectroscopy and weight-loss analysis. Relations between the nonstoichiometry and the conductivity of the La1− y Sr y Fe1− x Al x O3−δ perovskites were investigated. The incorporation of aluminum ( x ) into LaFe1− x AlxO3 was found to have no influence on the defect structure but to decrease the conductivity. The incorporation of strontium ( y ) into La1− y Sr y Fe1− x Al x O3−δ promotes the formation of anion vacancies and Fe4+ that lead to higher conductivity.  相似文献   

2.
Phase equilibria of the La2O3-SrO-CuO system have been determined at 950°C and 10 kbar (1 GPa). Stable phases at the apices of the ternary phase diagram are CuO, La2O3, and SrO. Stable intermediate phases are La2CuO4 in the LaO1.5-CuO binary and Sr2CuO3, SrCuO2, and Sr14Cu24O41 in the CuO-SrO binary. The La2-xSr x CuO4-δ solid solution is stable where 0.0 ≤ x ≤ 1.3, the La2-xSr1+xCu2O6+δ solid solution is stable where 0.0 ≤ x ≤ 0.2, the La8-xSr x Cu8O20-δ solid solution is stable where 1.3 ≤ x ≤ 2.7, the La x Sr14-x-Cu24O41 solid solution is stable where 0 ≤ x ≤ 6, and the La1+xSr2-xCu2O5.5+δ phase is stable where 0.04 ≤ x ≤ 0.16. The La2O3-SrO-CuO phase diagram at 950°C and 10 kbar is almost identical to that determined by other authors at 950°C and 1 atm, in terms of phase stability and solid-solution ranges.  相似文献   

3.
Phase equilibria of the La2O3–SrO–CuO system have been determined at 950°C at 30 kbar (3 GPa). Stable phases at the apexes of the ternary phase diagram are CuO, La2O3, and SrO. Stable intermediate phases are La2, CuO4 and La2Cu2O5 in the LaO1.5–CuO binary and Sr2CuO3, SrCuO2, and Sr14Cu24O41 in the CuO–SrO binary. The La2– x Sr x -CuO4–δ solid solution is stable for 0.00 is ≤ x ≤ 1.29, the La2– x Sr1+ x Cu2O6+δ solid solution is stable for 0.03 ≤ x ≤0.20, the La2– x Sr x Cu2O5–δ solid solution is stable for 0.00 ≤ x ≤1.08, and the La x Sr14– x Cu24O41 solid solution is stable for 0.00 ≤ x ≤ 6.15. The 30 kbar phase diagram differs from the 1 atm (0.1 MPa) and 10 kbar (1 GPa) results principally in the absence of La1– x Sr2+ x Cu2O5.5+δ as a stable phase and the extended range of the La2– x Sr x Cu2O5–δ solid solution at 30 kbar.  相似文献   

4.
La1- x A' x Fe0.8Co0.2O3-δ (A'= Ca, Sr, Ba) perovskite powders were synthesized to attain the desired properties of high O2 flux and stability under reducing conditions. Steady-state oxygen permeation rates for La1- x A' x Fe0.8-Co0.2O3-δ perovskite membranes in nonreacting experiments with air on one side and helium on the other side of the membrane were in the order A' x = Ba0.8 > Ba0.6 > Ca0.6 > Sr0.6. Partial oxidation of methane to syngas (CO + H2) was performed in a dense La0.2Ba0.8Fe0.8Co0.2O3-δ membrane reactor at 850°C in which oxygen was separated from air and simultaneously fed into the methane stream. The reducing atmosphere affected the membrane reaction-side surface while barium enrichment occurred on the air-side surface. Oxygen continuously transported from the air side appeared to stabilize the membrane interior, and the reactor was operated for up to 850 h.  相似文献   

5.
Samples of Sr2Fe2− x Mo x O6were prepared by solid-state reaction in air and 5%H2–95%N2. X-ray diffractometry was used to identify the phases and evaluate the lattice parameters. It is found that molybdenum ions can dissolve in the SrFeO3 even if the sample is heated in air but the solubility is limited. The solubility can be enhanced by heating the sample in low oxygen partial pressure, which is attributed to the larger ionic radii of Fe3+ and Mo5+ than that of Fe4+. The degradation of Sr2Fe2− x Mo x O6in water and air is also reported.  相似文献   

6.
Undoped and La-doped Bi2Fe4O9 ceramics were synthesized using a soft chemical method. It is observed that in calcining La-doped Bi2Fe4O9, Bi(La)FeO3 phase rather than Bi2− x La x Fe4O9 gradually increases with increasing La doping content. The phase conversion from mullite-type structure of Bi2Fe4O9 to rhombohedrally distorted perovskite one of Bi(La)FeO3 with increasing La doping content indicates that La doping can stabilize the structure of BiFeO3. This is further evidenced that Bi2Fe4O9 can be directly converted to Bi(La)FeO3 by heating the mixtures of nominal composition of Bi2Fe4O9/ x La2O3. Furthermore, the microstructure changes and the room temperature hysteresis loops and leakage current for Bi2− x La x Fe4O9 with x =0 and 0.02 were characterized.  相似文献   

7.
The electrical properties of Sr0.5Ba0.3TiO3 in the presence of Nb2O5 as a donor, 3Li2O · 2SiO2 as a sintering agent, and Bi2O3 as a dopant have been studied. When the compositions of the ceramics were 1 mol Sr0.7Ba0.3TiO3+ 0.5 mol% Nb2O5+ 2 mol% 3Li2O · 2SiO2+ 0.2 mol% Bi2O3, the ceramics were sintered at 1100°C and exhibited the following characteristics: apparent dielectric constant ɛ, 25000; loss factor tan δ, 2%; insulating resistivity ρj, 1010Ω· cm; variation of dielectric constant with temperature Δɛ/ɛ (−25° to +85°C), +10%, −14%. ɛ and tan δ show only small changes with frequency. The study shows this ceramic can be used in multilayer technology.  相似文献   

8.
Ceramics of the melilite-type compound La1+ x Sr1− x Ga3O7−δ were prepared by conventional ceramic processing. Samples prepared represented the entire homogeneity region of the phase (i.e., x =−0.15 to 0.60). Electrochemical characterization under variable temperature and atmospheric conditions in the vicinity of air entailed four-point direct-current conductivity measurements and electromotive force measurements. La1+ x Sr1− x Ga3O7−δ samples exhibited a p -type behavior with generally increased conductivity with increased substitution of lanthanum for strontium, which reached a saturation value of ∼10−1 S·cm−1 at 950°C.  相似文献   

9.
The in situ formation of magnetoplumbite-type (M-type) hexaferrites within a 3Y-TZP matrix was examined for the La2O3–ZnO–Fe2O3 and BaO–Fe2O3 systems. The formation of barium hexaferrite (Ba-M) was rapid enough at a temperature of 1300°C for 2 h to result in a uniform dispersion of fine Ba-M particles in a tetragonal zirconia polycrystal (TZP) matrix. However, the formation of lanthanum-substituted hexaferrite (La-M) was rather sluggish, despite the existence of a charge-compensating divalent oxide. The 3Y-TZP/20-wt%-BaFe12O19 in situ composite possessed good magnetic properties, as well as moderately good mechanical properties.  相似文献   

10.
Subsolidus phase equilibria in the system Fe2O3–Al2O3–TiO2 were investigated between 1000° and 1300°C. Quenched samples were examined using powder X-ray diffraction and electron probe microanalytical methods. The main features of the phase relations were: (a) the presence of an M3O5 solid solution series between end members Fe2TiO5 and Al2TiO5, (b) a miscibility gap along the Fe2O3–Al2O3 binary, (c) an α-M2O3( ss ) ternary solid-solution region based on mutual solubility between Fe2O3, Al2O3, and TiO2, and (d) an extensive three-phase region characterized by the assemblage M3O5+α-M2O3( ss ) + Cor( ss ). A comparison of results with previously established phase relations for the Fe2O3–Al2O3–TiO2 system shows considerable discrepancy.  相似文献   

11.
Measurements were made of temperature and ternary composition for coexisting liquid and crystalline phases on the air isobar in the system Fe2O3-Fe3O4-YFeO3 with particular regard to the stability range and compositional limits of yttrium iron garnet. Phase equilibrium relations were determined by conventional quenching techniques combined with measurements of loss in weight at the reaction temperature to locate true ternary compositions. The intersection of the air isobar with the ternary univariant boundary curve for coexisting magnetite, garnet, and liquid phases results in a eutectic-type situation at the composition Y0.27Fe1.73 O2.87 and 1469°± 2°C. A similar intersection of the isobar with the boundary curve for coexisting garnet, orthoferrite, and liquid phases gives rise to a peritectic-type reaction at 1555° 3°C. and Y0.44Fe1.56 O2.89 The yttrium iron garnet crystallizing from liquids within these temperature and composition limits contains up to 0.5 mole % iron oxide in excess of the stoichiometric formula in terms of the starting composition 37.5 mole % Y2O3, 62.5 mole % Fe2O3. At 1470° C. the garnet phase in equilibrium with oxide liquid contains 2 mole % FeO in solid solution. The small solubility of excess of iron oxide and partial reduction of the garnet phase in air are unavoidable during equilibrium growth from the melt.  相似文献   

12.
The formation process of Ba2La8(SiO4)6O2 was clarified using thermogravimetry–differential thermal analysis (TG-DTA) and a high-temperature powder X-ray diffraction (HT-XRD) method. Phase changes identified from the HT-XRD data surprisingly corresponded to the weight loss and/or endothermic peaks observed in the TG-DTA curves. Raw material with the composition Ba2La8(SiO4)6O2 was completely reacted at 1400°C and produced only an apatite-type compound without a secondary phase. Moreover, the synthesis of Ba2+ x La8− x (SiO4)6O2−δ crystals with x = 0–2 was attempted using a solid-state reaction.  相似文献   

13.
Subsolidus phase relationships in the Ga2O3–In2O3–SnO2 system were studied by X-ray diffraction over the temperature range 1250–1400°C. At 1250°C, several phases are stable in the ternary system, including Ga2O3( ss ), In2O3( ss ), SnO2, Ga3− x In5+ x Sn2O16, and several intergrowth phases that can be expressed as Ga4−4 x In4 x Sn n −4O2 n −2 where n is an integer. An In2O3–SnO2 phase and Ga4SnO8 form at 1375°C but are not stable at 1250°C. GaInO3 did not form over the temperature range 1000–1400°C.  相似文献   

14.
Phase relations in the quasi-ternary system MgO-V2O3-VO2 at 1200°C were studied using the quenching technique under controlled O2 atmospheres. A new phase of a type z VO y Mg2− x V1+ x O4 (0< x <1, y ≥1.5, z >0) was found with a compositional region along the MgV2O4-Mg2VO4 join. Equilibrium P O 2 observed for Mg2− x V1+ x O4 is quite different from that for V n O2 n -1 with an equal ratio of V3+/V4+, corresponding to the V3+ stabilities in two types of compounds. Thus, the phase relations in the ternary system were constructed on a conventional triaxial diagram as a function of P O2.  相似文献   

15.
Solid-state reactions of equimolar mixtures of Bi2O3 and Fe2O3 from 625° to 830°C and their kinetics were investigated. The reaction rates were determined from the integrated X-ray diffraction intensities of the strongest peaks of the reactants and products. The activation energy for the formation of BiFeO3 was 96.6±9.0 kcal/mol; that for a second-phase compound, Bi2Fe4O9, which formed above 675°C, was 99.4±9.0 kcal/mol. Specific rate constants for these simultaneous reactions were obtained. The preparation of single-phase BiFeO3 from the stoichiometric mixture of Bi2O3 and Fe2O3 is discussed.  相似文献   

16.
Steady-state compressive creep rate of La0.5Sr0.5Fe0.5Co0.5O3−δ (LSFC) and La0.5Sr0.5CoO3−δ (LSC) is reported in the temperature region 900°–1050°C and stress range 5–28 MPa. The stress exponents for the two materials were 1.71±0.18 and 1.24±0.15, respectively. The activation energy for creep was considerably higher for LSC (619±56 kJ/mol) than for LSFC (392±28 kJ/mol). The grain size exponent for LSC was 1.28±0.14. Considerably higher creep rates were observed for both materials in N2 compared with air. Relaxation by creep of chemical-induced stresses in oxygen-permeable membranes is addressed, especially at low partial pressure of oxygen.  相似文献   

17.
The vaporization of the samples of the compositions Ga2O3+ LaGaO3, LaGaO3+ La4Ga2O9, and La4Ga2O9+ La2O3 was investigated using Knudsen effusion mass spectrometry in the temperature range 1494–1937 K. The partial pressures of the gaseous species O2, Ga, GaO, Ga2O, and LaO were determined over the samples investigated. The equilibrium partial pressures were used for the calculation of the thermodynamic activities of the components at 1700 K. Gibbs energies of formation of LaGaO3( s ) and La4Ga2O9( s ) at 1700 K from the component oxides were derived from the thermodynamic activities as −46.4 ± 4.7 and −99.2 ± 7.9 kJ·mol−1, respectively. The results were compared with the literature data obtained using other methods.  相似文献   

18.
The crystals of Ca2(Al x Fe1− x )2O5 with 0 ≤ x ≤ 0.4 were examined using powder XRD at temperatures between 25° and 1000°C. The Pcmn to Ibm 2 phase transition was readily detected by the disappearance of the 131 and 151 reflections ( h + k + l odd). Thus, the phase relationship has been determined as combined functions of the temperature and x -value. At 25°C, the space group changed from Pcmn (0 ≤ x ≤ 0.23) to Ibm 2 (0.24 ≤ x ≤ 0.40) across x = 0.235. With increased x -value, the cell dimensions of both phases steadily decreased, showing the nearly complete continuity at that phase boundary. For the crystal with x = 0 (Ca2Fe2O5), the cell dimensions steadily increased during heating to 685°C, at which temperature the phase transition occurred. There was a slight discontinuous decrease in cell dimensions just after the transition. Subsequent heating to 1000°C of the Ibm 2 phase led to a steady thermal expansion along the b -axis and c -axis, while a slight contraction occurred along the a -axis up to 800°C.  相似文献   

19.
Two cubic pyrochlore phases exist in the system ZnO–Bi2O3–Sb2O5. Neither has the supposed "ideal" stoichiometry, Zn2Bi3Sb3O14. One, P 1, is a solid solution phase, Zn2+ x Bi2.96−( x − y )Sb3.04− y O14.04+δ where 0< x <0.13(1), 0< y <0.017(2) and a =10.4285(9)−10.451(1) Å. The other, P 2, is a line phase, Zn2Bi3.08Sb2.92O13.92 with a =10.462(2) Å. Subsolidus phase relations at 950°C involving phases P 1 and P 2 in the ZnO–Bi2O3–Sb2O5 phase diagram have been determined.  相似文献   

20.
Phase relations in the spinel region of the system FeO-Fe2O3-Al2O3 were determined in CO2 at 1300°, 1400°, and 15000°C and for partial oxygen pressures of 4 × 10−7 and 7 × 10−10 atmospheres at 15OO°C. The spinel field extends continuously from Fe3O4-x to FeAl2O4+z.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号