首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用直流反应磁控溅射方法,在硅衬底制备了高介电HfOxNy薄膜。用椭偏仪研究了后期退火处理对薄膜光学性质的影响,结果表明,薄膜的折射率随退火温度的升高而增加,这主要是由于高温退火导致薄膜内部缺陷减少,使得薄膜松散的内部结构变得更加致密;薄膜的消光系数随退火温度的升高而降低,这是由于因为退火后薄膜内的缺陷减少。光学禁带宽度随退火温度的升高而增加,这是由于退火过程中薄膜中N含量的减少而导致。  相似文献   

2.
TiAlN thin films deposited on silicon and glass substrates using a reactive DC magnetron sputtering system with different mixture volume of pure nitrogen and argon gases. Phase formation, phase transition, elemental composition, hardness and optical properties are mostly affected by the nitrogen amount in reactive gas. The concentration of Al causes large effects to both the intensity of X ray diffraction and the position of preferred growth orientation. Depending on the Al content, the films either have a single phase cubic TiAlN structure or consist of a mixture of cubic TiN and hexagonal AlN phases with a decrease in the degree of crystallinity. With increasing N2 amount, the amorphous films with a denser and smoother microstructure similar to the zone T structure developed. AFM results indicated that an increase in Al content resulted in an increase of surface roughness. Experimental data indicates that the hardness is affected not only by microstructure but also by the existence of Al content. The UV–Vis absorbance and transmittance spectra depend on N content. We have also found that the films prepared at lower nitrogen amount have high optical transparent at UV range. The absorption spectra exhibit redshift characteristic with increasing particle size.  相似文献   

3.
Aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by employing radio frequency (RF) sputtering method for transparent conducting oxide applications. For the RF sputtering process, a ZnO:Al2O3 (2 wt.%) target was employed. In this paper, the effects of near infrared ray (NIR) annealing technique on the structural, optical, and electrical properties of the AZO thin films have been researched. Experimental results showed that NIR annealing affected the microstructure, electrical resistance, and optical transmittance of the AZO thin films. X-ray diffraction analysis revealed that all films have a hexagonal wurtzite crystal structure with the preferentially c-axis oriented normal to the substrate surface. Optical transmittance spectra of the AZO thin films exhibited transmittance higher than about 80% within the visible wavelength region, and the optical direct bandgap (Eg) of the AZO films was increased with increasing the NIR energy efficiency.  相似文献   

4.
Cu3N薄膜的晶面取向、沉积速率、电学特性等性质除与制备方法有关外,还和制备工艺参数有很大关系。溅射法制备Cu3N薄膜工艺参数主要有,混合气体(N2+Ar)中氮气分压比r、基底温度T(℃)、溅射功率P(W)。为了研究Cu3N薄膜的性能与其制备工艺参数之间关系,本文采用反应射频磁控溅射法,在玻璃基底上成功制备了Cu3N薄膜,并研究了工艺参数对其晶面取向、膜厚、电学性能、沉积速率的影响。  相似文献   

5.
Single layered amorphous carbon nitride (a-CNx) films and a multilayered a-CNx film were prepared by reactive radio frequency magnetron sputtering of a graphite target and nitrogen gas. This paper describes the optical, electrical and opto-electrical properties of the a-CNx films. The optical band-gap of the single layered films increased with increasing nitrogen concentration, which was controlled through the deposition temperature. The photo-sensitivity values, a ratio of photo- and dark-conductivities, ranged from 2.2 to 6.0. In the multilayered film consisting of four a-CNx layers deposited at different temperatures, the photo-sensitivity of the multilayered film was over 1.2 times as compared with that of the single layered films.  相似文献   

6.
In this study, transparent conductive films of gallium-doped zinc oxide (GZO) are deposited on soda-lime glass substrates, under varied coating conditions (rf power, sputtering pressure, substrate-to-target distance and deposition time), using radio frequency (rf) magnetron sputtering, at room temperature. The effect of the coating parameters on the structural, morphological, electrical and optical properties of GZO films was studied. This study uses a grey-based Taguchi method, to determine the parameters of the coating process for GZO films, by considering multiple performance characteristics. In the confirmation runs, with grey relational analysis, improvements of 14.1% in the deposition rate, 39.81% in electrical resistivity and 1.38% in visible range transmittance were noted. The influence of annealing treatment, in a vacuum, oxygen, and nitrogen gas atmospheres, at temperatures ranging from 130 to 190 °C, for a period of 1 h, was also investigated. GZO films annealed at 190 °C, in a vacuum, showed the lowest electrical resistivity, at 1.07 × 10−3 Ω-cm, with about 85% optical transmittance, in the visible region. It is likely that films grown at lower temperatures (190 °C) could be coated onto polymeric substrates, to produce flexible optoelectronic devices.  相似文献   

7.
《Ceramics International》2022,48(21):31148-31156
Thin layers of Bi2-chalcogenides, in the form of Bi2(Se1-xTex)3 films, were evaporated on glass substrates by means of the vacuum thermal evaporation. Microstructure of the as prepared layers was investigated by x-ray diffraction (XRD) analysis. Identifications of the surface morphology and roughness were determined via scanning electron microscope (SEM). Optical transmissivity spectra proved that the as prepared films have low transparency with growing trend upon increasing the wavelength beyond the infra-red region. Low transmittance was observed for the as prepared films. Heat treatment, in the form of temperature annealing, was carried out aiming at boosting the structural features and the materials transmissivity. Structural properties and surface features of the annealed films were probed also via XRD and SEM analyses. It was found that the crystal size increases while the micro-strain and the dislocation density decrease obviously due to annealing. It was also observed that the annealing process significantly enhances the materials transmission especially in the range of higher wavelengths. Optical band gap was studied after annealing at various temperatures. Notable change in the band gap value was observed as a result of annealing. The band gap of the undoped (Bi2Se3) materials showed significant rise from 0.14 to 1.79 eV due to annealing. Similarly, the Te-doped samples exhibited notable increase in their band gap values after annealing. For example, the optical band gap of the sample doped at x = 0.20 increased from 0.03 to 0.41 eV by annealing. On the other hand, transmittance was also enhanced by annealing. For samples treated at 250 °C for 3 h, their optical transmissivity is enhanced to over 99% at the visible near-IR range. Such significant enhancement can be ascribed to structural enhancements. With such enhancement in the optical transmissivity, optoelectronic applications including transparent electrode can be met.  相似文献   

8.
In this study, gallium oxide (Ga2O3) thin films were deposited on sapphire and n-Si substrates using Ga2O3 target by radio frequency magnetron sputtering (RFMS) at substrate temperature of 300 °C at variable RF power and deposition pressure. The effects of deposition pressure and growth power on crystalline structure, morphology, transmittance, refractive index and band gap energy were investigated in detail. X-ray diffraction results showed that amorphous phase was observed in all the as-deposited thin films except for the thin films grown at low growth pressure. All the films showed conversion to poly-crystal β-Ga2O3 phase after annealing process. When the deposition pressure increased from 7.5 mTorr to 12.20 mTorr, change in the 2D growth mode to 3D columnar growth mode was observed from the SEM images. Annealing clearly showed formation of larger grains for all the thin films. Lower transmission values were observed as the growth pressure increases. Annealing caused to obtain similar transmittance values for the thin films grown at different pressures. It was found that a red shift observed in the absorption edges and the energy band gap values decrease with increasing growth pressure. For as-deposited and annealing films, increasing sputtering power resulted in the increase refractive index.  相似文献   

9.
In this study, synthesis and characterization of plasma polymerized Thiophene/ Nickel doped Zinc Oxide (PTNZO) bilayer nanocomposite films were carried out. Nickel doped zinc oxide (NZO) thin films were obtained by magnetron sputtering technique on glass substrates at 40 W Radio Frequency (RF) power. Plasma polymerized Thiophene (PT) thin films were deposited on the NZO thin films obtained on the glass substrate by Radio Frequency (RF) plasma polymerisation technique. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), FTIR and Photoluminescence (PL) analyzes were performed for the characterization of PTNZO hetero bilayer nanocomposite films. In the XRD spectra of PTNZO bilayer nanocomposite thin films, (002) planes were determined as the most basic peak, and it was determined that the intensity of this peak, changed depending on the RF power of polymer thin films. Optical properties of nanocomposite thin films such as transmittance, absorbance and optical band gap were determined by UV–Vis spectroscopy. Optical band gap for PTNZO nanocomposites were 2.72?eV, 2.34?eV, and 2.45?eV, respectively, with increasing RF power. For NZO thin films, this value is 3.12?eV. The optical band gaps calculated from the absorption and transmittance spectra obtained using UV–visible spectroscopy had a good compatibility with those of the optical band spectra calculated from the PL spectra. The tetragonal wurtzite structure of the NZO thin films was examined by SEM analysis. The grain size of NZO nanostructure was found to be approximately 59?nm.  相似文献   

10.
Ultrananocrystalline diamond (UNCD) films grown in an argon-rich Ar/CH4/H2 microwave plasma with nitrogen gas added in amounts of 0%–20% were studied by Raman spectroscopy with multiple excitation wavelengths in the range of 244–647 nm and by optical absorption in UV–visible. The Raman spectra have demonstrated the presence of diamond, amorphous carbon and polyacetylene in the UNCD films. Analysis of vibrational and optical properties of amorphous carbon phase proves that nitrogen stimulates the transition from amorphous carbon into an ordered graphite-like structure with narrowed optical band gap, which is supposed to be responsible for the high electrical conductivity of the N-doped UNCD.  相似文献   

11.
系统研究了在O2氛围中不同的热处理温度对FTO薄膜结构、形貌和光电性质的影响。结果表明,当退火温度较低时,样品的结晶度、可见光透过率和导电性均随退火温度的升高而升高;随着退火温度的进一步升高,样品的光电特性开始变差。当退火温度为300℃时,得到了具有最低电阻率和最高可见光透过率的样品,其室温电阻率为2.97×10-4Ωcm,可见光透过率达83%。  相似文献   

12.
The effect of thermal annealing on structure and mechanical properties of amorphous SiCxNy (y ≥ 0) thin films was investigated up to 1500°C in air and Ar. The SiCxNy films (2.2–3.4 μm) were deposited by reactive DC magnetron sputtering on Si, Al2O3 and α‐SiC substrates without intentional heating and at 600°C. The SiC target with small excess of carbon was sputtered at various N2/Ar gas flow ratios (0–0.48). The nitrogen content in the films changes in the range 0–43 at.%. Hardness and elastic modulus (nanoindentation), change in film thickness, film composition, and structure (Raman spectroscopy, XRD) were investigated in dependence on annealing temperature and nitrogen content. All SiCxNy films preserve their amorphous structure up to 1500°C. The hardness of all as‐deposited and both air‐ and Ar‐annealed SiCxNy films decreases with growth of nitrogen content. The annealing in Ar at temperatures of 1100°C–1300°C results in noticeable hardness growth despite the ordering of graphite‐like structure in carbon clusters in nitrogen free films. Unlike the SiC, this graphitization leads to hardness saturation of SiCN films starting above 900°C, especially for films with higher nitrogen content (deposited at higher N2/Ar). This indicates the practical hardness limit achievable by thermal treatment for SiCxNy films deposited on unheated substrates. The ordering in carbon phase is facilitated by the presence of nitrogen in the films and its extent is controlled by the N/C atomic ratio. The suppression of graphitization was observed for N/C ranging between 0.5–0.7. Films deposited at 600°C show higher hardness and oxidation resistance after annealing in comparison with those deposited on unheated substrates. Hardness reaches 40 GPa for SiC and ~28 GPa for SiCxNy (35 at.% of nitrogen). Such a high hardness of SiC film stems from its partial crystallization. Annealing of SiCxNy film (35 at.% of N) in Ar at 1400°C is accompanied by formation of numerous hillocks (indicating heterogeneous structure of amorphous films) and redistribution of film material.  相似文献   

13.
WO3 thin film is one of the most important and applied metal oxide semiconductors that have attracted the scientist’s attention in recent decades. WO3 thin films by two different methods: reactive and non-reactive RF magnetron sputtering deposited on soda lime glass. The effect of presence and absence of oxygen gas in system and RF power on structural, morphological and optical properties of thin films were investigated. The XRD analysis of the films shows the amorphous structure. Spectrophotometer analysis and calculation show that the optical properties of reactive sputtered layers were better than the non-reactive sputtered thin films. By changing deposition parameters, over 70 % transmission achieved for WO3 films. The results showed that reactive sputtering method improved the optical properties of layers and increased band gap up to 3.49 eV and on the other hand reduced roughness of thin films. On the whole, presence of oxygen in the chamber during sputtering improved properties of WO3 thin films.  相似文献   

14.
《Ceramics International》2023,49(8):11803-11812
Vanadium dioxide (VO2) has been studied extensively for its unique insulator-metal transition characteristics and potential applications in thermochromic smart windows, switching devices, and infrared detectors. However, how to balance the metal-insulator transition temperature, luminous transmittance (Tlum) and solar modulation ability (ΔTsol) of VO2 thin films remains a challenge. In this work, high-quality thermochromic VO2 thin films were prepared by a two-step method of magnetron sputtering and thermal oxidation annealing. Metallic and alloyed V–Mo layers were first deposited by direct-current reactive magnetron sputtering, and then a thermal oxidation annealing process was used to obtain pure and Mo-doped VO2 thin films. The Mo content in the films was regulated by changing the sputtering power of the vanadium target, and the effect of Mo doping on the crystallinity, microstructure, phase transition temperature and optical properties of VO2 thin films was studied. The shift of the VO2(011) peak to a lower 2θ angle in the XRD patterns showed that Mo was successfully diffused into vanadium dioxide films. The phase transition temperatures were decreased continuously from 57.4 to 32.7 °C by decreasing the sputtering power of vanadium. The thinner Mo-doped VO2 thin films showed higher luminous transmittance and lower transition temperature. Our results were shown to be an innovative preparation method to fabricate thermochromic VO2 films with a low phase transition temperature, balanced luminous transmittance and solar modulation ability by thermal oxidation of V–Mo cosputtered alloy films.  相似文献   

15.
《Ceramics International》2016,42(5):5754-5761
AZO/Cu/AZO multilayer thin films produced under different annealing conditions are studied in this paper, to examine the effects of atmosphere and annealing temperature on their optical and electrical properties. The multilayer thin films are prepared by simultaneous RF magnetron sputtering (for AZO) and DC magnetron sputtering (for Cu). The thin films were annealed in a vacuum or an atmosphere of oxygen at temperatures ranging from 100 to 400 °C in steps of 100 °C for 3 min. High-quality multilayer films (at Cu layer thickness of 15 nm) with resistivity of 1.99×10−5 Ω-cm and maximum optical transmittance of 76.23% were obtained at 400 °C annealing temperature in a vacuum. These results show the films to be good candidates for use as high quality electrodes in various displays applications.  相似文献   

16.
Nitrogenated diamond-like (DLC:N) carbon thin films have been deposited by microwave surface wave plasma chemical vapor deposition on silicon and quartz substrates, using argon gas, camphor dissolved in ethyl alcohol composition and nitrogen as plasma source. The deposited DLC:N films were characterized for their chemical, optical, structural and electrical properties through X-ray photoelectron spectroscopy, UV/VIS/NIR spectroscopy, Raman spectroscopy, atomic force microscope and current–voltage characteristics. Optical band gap decreased (2.7 to 2.4 eV) with increasing Ar gas flow rate. The photovoltaic measurements of DLC:N / p-Si structure show that the open-circuit voltage (Voc) of 168.8 mV and a short-circuit current density (Jsc) of 8.4 μA/cm2 under light illumination (AM 1.5 100 mW/cm2). The energy conversion efficiency and fill factor were found to be 3.4 × 10− 4% and 0.238 respectively.  相似文献   

17.
Carbon nitride films were deposited by filtered cathode vacuum arc combined with radio frequency nitrogen ion beam source. Both visible Raman spectroscopy and UV Raman spectroscopy are used to study the bonding type and the change of bonding structure in carbon nitride films with nitrogen ion energy. Both C–N bonds and CN bonds can be directly observed from the deconvolution results of visible and UV Raman spectra for carbon nitride films. Visible Raman spectroscopy is more sensitive to the disorder and clustering of sp2 carbon. The UV (244 nm) Raman spectra clearly reveal the presence of the sp3 C atoms in carbon nitride films. Nitrogen ion energy is an important factor that affects the structure of carbon nitride films. At low nitrogen ion energy (below 400 eV), the increase of nitrogen ion energy leads to the drastic increase of sp2/sp3 ratio, sp2 cluster size and C---N bonds fraction. At higher nitrogen ion energy, increase leads to the slight increase of CN bonds fraction and sp2 cluster size, slight decrease of C---N bonds fraction and sp2/sp3 ratio.  相似文献   

18.
Hexagonal boron nitride (hBN) thin films were deposited on silicon and quartz substrates using sequential exposures of triethylboron and N2/H2 plasma in a hollow‐cathode plasma‐assisted atomic layer deposition reactor at low temperatures (≤450°C). A non‐saturating film deposition rate was observed for substrate temperatures above 250°C. BN films were characterized for their chemical composition, crystallinity, surface morphology, and optical properties. X‐ray photoelectron spectroscopy (XPS) depicted the peaks of boron, nitrogen, carbon, and oxygen at the film surface. B 1s and N 1s high‐resolution XPS spectra confirmed the presence of BN with peaks located at 190.8 and 398.3 eV, respectively. As deposited films were polycrystalline, single‐phase hBN irrespective of the deposition temperature. Absorption spectra exhibited an optical band edge at ~5.25 eV and an optical transmittance greater than 90% in the visible region of the spectrum. Refractive index of the hBN film deposited at 450°C was 1.60 at 550 nm, which increased to 1.64 after postdeposition annealing at 800°C for 30 min. These results represent the first demonstration of hBN deposition using low‐temperature hollow‐cathode plasma‐assisted sequential deposition technique.  相似文献   

19.
Silicon Carbide thin films have been prepared by RF reactive magnetron sputtering of a silicon target in a mixture of Ar and CH4. Surface analysis was performed by X-ray photoelectron spectroscopy (XPS) to examine the elemental bonding at the surface and in bulk of the material. Optical analysis was carried out by ellipsometry to study the optical constants (n and k) and band gap of the films. Transmission and scanning electron microscopy, FTIR and X-ray diffraction, were employed to supplement our results. The near surface of SiC exposed to atmosphere was primarily composed of SiO2 along with amorphous carbon while the bulk of the material was SiC. At higher plasma power and lower CH4 concentration, the graphitic phase in the surface decreases and the refractive index increases while surface oxide layer remains present.  相似文献   

20.
《Ceramics International》2020,46(15):24147-24154
Aluminum-gallium oxide (AGO) films on c-plane sapphire substrates by pulsed laser deposition are described. Both nitrogen and oxygen annealing effects on the structural and optical properties of AGO films are investigated. The AGO film shows an amorphous structure when deposited at low temperatures (≤400 °C) while a crystalline structure at 800 °C. After post annealing at 900 °C, an amorphous-to-crystalline phase transformation for the 400°C-deposited film occurs and shows the preferred β phase. The corresponding optical bandgap also increases from 5.14 eV to 5.41–5.46 eV depending on the annealing ambience. From Raman measurements, the 800°C-deposited AGO sample possesses a more stable O–Ga–O bonding compared to that of the 400°C-deposited one after annealing. Unusually, an evident increase in the nitrogen content is observed for the samples after post annealing at 900 °C in nitrogen atmosphere. The rapid dissociation of oxygen atoms may accelerate the disintegration of crystals and rearrangement, which makes the AGO film adsorb nitrogen atoms and cause the grain size to be significantly reduced. However, the extent of the nitrogen incorporation seems to have no apparent effect on the optical properties. All the AGO films show the optical transmittance over 80% in the ultraviolet–visible region with the calculated bandgaps more than 5.4 eV. Details of the mechanism about the nitrogen incorporation into the annealed AGO films via the oxygen vacancies or micro-pores will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号