首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 595 毫秒
1.
In two recent creep studies of inhomogeneous nickelcopper solid solution alloys,i.e. cast weld metal with solidification-induced composition gradients[1] and nickelcopper laminate composites with controlled composition gradients across the layers,[2] the creep rates at an intermediate temperature (500 °C) were shown to decrease with an increase in homogenization. The creep behavior in inhomogeneous alloy systems reflects the composite effects of position-dependent creep properties as controlled by solid solution alloy content. To utilize composite modeling techniques in creep analyses of materials with composition gradients, creep data of homogeneous materials as a function of alloy content are required. Therefore, this study was undertaken to evaluate the creep behavior of nickel-copper solid solution alloys at intermediate temperatures and to provide a base set of data to evaluate the effect of gradients described above.[1,2] I. D. CHOI, formerly Graduate Research Assistant, Colorado School of Mines.  相似文献   

2.
A solid state method has been found for manufacturing of lead–silver composites for use as anodes in electrowinning production. Mechanical properties and microstructure of composite were characterized via peeling, tensile and microhardness tests, and scanning electron microscopy, transmission electron microscopy and fractography. Based on the peeling test results, maximum bond strength was achieved in the presence of 0.125 wt% of Ag (1.8 N/mm). Best mechanical properties were achieved in the Pb–0.5 wt% Ag composite after 10 ARB cycles by the enhanced tensile strength rising up to 50%, yield strength up to 170%, shear strength up to 63% and hardness up to 2.6 times higher, and the strain decreasing to 68% lower. These advanced properties led to higher stiffness and considerable enhancements in dimensional stability of the anodes and they improved creep characteristics. The advanced properties of the processed Pb–Ag composite anodes could be introduced as certification for slower anode failure, upkeep, surcharge and capital expenditure of industries with essential lead anode requirement.  相似文献   

3.
A study was undertaken to determine if oxide dispersion strengthened (ODS) Ni-base alloys in wrought bar form are subject to a loss of room temperature tensile properties after elevated temperature creep similar to that found in a thin gage ODS alloy sheet. The bar products evaluated included ODS-Ni, ODS-NiCr, and advanced ODS-NiCrAl types. Tensile type test specimens were creep exposed in air at various stress levels at 1365 K and then tensile tested at room temperature. Low residual tensile properties, change in fracture mode, the appearance of dispersoid free bands, grain boundary cavitation, and/or internal oxidation in the microstructure were interpreted as creep degradation effects. This work has shown that many ODS alloys are subject to creep damage. Degradation of tensile properties occurs after very small amounts (≲0.2 pct) of creep strain; ductility being the most sensitive property. The amount of degradation is dependent on the creep strain and is essentially independent of the alloy system. All the ODS alloys which were creep damaged possessed a large grain size (>100 μm). Creep damage appears to be due to diffusional creep which produces dispersoid free bands around boundaries acting as vacancy sources. Low angle and, possibly, twin boundaries were found to act as vacancy sources. The residual tensile properties of two alloys were not affected by prior creep parallel to the extrusion axis. One of these alloys, DS-NiCr(S), was single crystalline. The other alloy, TD-Ni, possessed a small, elongated grain structure which minimized the thickness of the dispersoid free bands produced by diffusional creep.  相似文献   

4.
Accelerated aging tests are being conducted on more than 20 types of glass fiber-reinforced polymer (GFRP) reinforcing bars, which are produced from different combinations of constituent materials, manufacturing parameters, sizes and shapes, and surface coatings. The specimens are being subjected to various sustained tensile loading (22 to 68% of ultimate strength) in three types of alkaline environments: NaOH, simulated pore-water solution, and embedded in concrete. Time to rupture or residual strength, as applicable, have been determined. Additionally, stress corrosion mechanisms were evaluated by various microstructural analyses. The results showed clearly that alkaline ions and moisture could penetrate or diffuse through the resin (or through cracks and voids) to the interphases and the fibers. For GFRP bars embedded in moist concrete under various sustained stress levels, three types of stress corrosion mechanisms have been identified: stress dominated, crack propagation dominated, and diffusion dominated.  相似文献   

5.
This research concerns polymer matrix composite (PMC) materials having long or continuous reinforcement fibers embedded in a polymer matrix. The objective is to develop comparatively simple, designer friendly constitutive equations intended to serve as the basis of a structural design methodology for this class of PMC. Here (Part II), the focus is on extending the damage/failure model of an anisotropic deformation/damage theory presented earlier. A companion paper (Part I) by the writers deals with creep deformation of the same class of PMC. The extension of the damage model leads to a generalization of the well known Monkman/Grant relationship to transverse isotropy. The usefulness of this relationship is that it permits estimates of (long term) creep rupture life on (short term) estimates of creep deformation rate. The current extension also allows estimates of failure time for various fiber orientations. Supporting exploratory experiments are defined and conducted on thin-walled specimens fabricated from a model PMC. A primary assumption in the damage model is that the stress dependence of damage evolution is on the transverse tensile and longitudinal shear traction acting at the fiber/matrix interface. We conjecture that a supplemental mechanism of failure is the extensional strain in the fiber itself. The two postulated mechanisms used in conjunction suggest that an optimal fiber angle may exist in this class of PMC, maximizing the time to creep failure.  相似文献   

6.
Conclusions By altering the processing parameters of plasma spray-deposition of composite metal-boron nitride materials, it is possible to vary within wide ranges the physicomechanical properties of soft sealing deposits of these materials. The strength, porosity, hardness, and solid lubricant content of metal-boron nitride sealing coatings are determined primarily by the physicomechanical properties of the metal and the amount of boron nitride in the composite being deposited and also by the particle size analysis of the charge. The effect of jet parameters on the properties of coatings varies depending on the nature of the composite material, which is mainly due to differences in the energetic levels and degrees of spheroidization of charge particles.Translated from Poroshkovaya Metallurgiya, No. 8(224), pp. 91–96, August, 1981.  相似文献   

7.
The tensile and creep behavior of a unidirectionally solidified (Co, Cr)?(Cr, Co)7C3 monovariant eutectic alloy have been examined. The effect of fiber orientation on the tensile strength has been studied at temperatures to 2200°F. The composite was found to be anisotropic with considerable strengthening in the longitudinal direction and with the transverse and 45 deg ultimate strengths being limited by cracks initiating in the carbide phase. At room temperature, prestressing due to thermal expansion mismatch results in a large difference between the longitudinal compressive and tensile yield stresses. Longitudinal creep data for the 1800° to 2200°F temperature range are presented and examined in terms of the directional structure. The activation energy for creep is observed to be much higher than that for chromium diffusion in a Co?Cr alloy. These analyses suggest that the creep of the eutectic composite is controlled by the creep and fracture of the reinforcing carbides.  相似文献   

8.
The effects of incoherent dispersoids on tensile and creep properties were determined in rapidly solidified Ti-Er and Ti-Nd alloys. Uniform distributions of. fine incoherent dispersoids in Ti matrix were produced by rapid solidification at cooling rates > 103 °C per second and subsequent annealing at 700 to 800°C of Ti-1.0Er, Ti-2.0Er, Ti-1.5Nd, and Ti-3.0Nd alloys. The rapidly solidified particulates consolidated by vacuum hot pressing were isothermally forged, rolled, and annealed to produce fully recrystallized microstructures. The incoherent dispersoids in Ti-Er and Ti-Nd alloys increase by 40 to 110 pct the yield strength and ultimate tensile strength of Ti with no significant loss in ductility. The strength increments were analyzed in terms of the superposition of dispersion-, solid solution-, and fine grain-strengthening. Dispersion strengthening is offset to some extent by the reduction in interstitial oxygen solid solution strengthening caused by the scavenging of oxygen by Er and Nd. The dispersoids decrease the creep rates and increase the stress rupture lifetimes of Ti at 482 to 700 °C.  相似文献   

9.
以氢化脱氢钛粉为原料,采用粉末轧制和真空烧结工艺制备出两种不同厚度的多孔钛板。利用孔径及孔径分布分析、扫描电镜观察、拉伸实验、三点弯曲实验、剪切强度测试等手段,对垂直于轧制方向和平行于轧制方向的板材力学性能进行了研究,并从孔径分布和烧结颈发育方面对其进行了解释。结果表明,1.96 mm厚的多孔钛板比1.32 mm厚多孔钛板的最大孔径小,且其孔径分布相对均匀;对于厚度相同的粉末轧制多孔钛板,垂直于轧制方向的板材平均抗拉强度比平行于轧制方向的增大25%、弯曲强度增大45%;随着轧制多孔钛板厚度的增加,其抗拉强度、弯曲强度、剪切强度等均显著增大,粉末轧制多孔钛板力学性能的方向差异与轧制致密板材的方向差异完全相反。  相似文献   

10.
惠志林  高云  李明  崔舜  余成洲 《稀有金属》2003,27(6):734-737
介绍了一种复合金属多孔体的制备及其方法,首先以泡沫塑料为芯膜,经过导电化处理使其具有导电性,其次进行电沉积金属铁,再进行电沉积金属镍,经过热处理后可制备出复合金属多孔体。该复合金属多孔体用铁取代金属镍,其抗拉性能优于单质泡沫镍,同时可以降低制造成本,主要用于载体如电池电极。  相似文献   

11.
The influence of composition on the tensile and creep strength of [001] oriented nickel-base superalloy single crystals at temperatures near 1000 °C was investigated. Cobalt, tantalum, and tungsten concentrations were varied according to a matrix of compositions based on the single crystal version of MAR-M247.* For alloys with the baseline refractory metal level of 3 wt pct Ta and 10 wt pct W, decreases in Co level from 10 to 0 wt pct resulted in increased tensile and creep strength. Substitution of 2 wt pct W for 3 wt pct Ta resulted in decreased creep life at high stresses, but improved life at low stresses. Substitution of Ni for Ta caused large reductions in tensile strength and creep resistance, and corresponding increases in ductility. For these alloys with low Ta plus W totals, strength was independent of Co level. The effects of composition on properties were related to the microstructural features of the alloys. In general, high creep strength was associated with high levels ofγ′ volume fraction,γ-γ′ lattice mismatch, and solid solution hardening.  相似文献   

12.
用磷酸、硅烷KH550和钢渣制备改性多孔钢渣, 以改性多孔钢渣取代部分炭黑.利用改性多孔钢渣、炭黑、橡胶、促进剂、硫磺、硬脂酸和氧化锌进行复合, 制备一系列改性多孔钢渣/橡胶复合材料, 研究了磷酸/钢渣质量比、硅烷KH550/多孔钢渣质量比、促进剂/硫磺质量比、硬脂酸/氧化锌质量比和改性多孔钢渣/炭黑质量比对改性多孔钢渣/橡胶复合材料力学性能的影响, 并且分析其影响机理.结果表明, 当磷酸用量为1.2 g、钢渣用量为30 g、硅烷KH550用量为0.3 g、炭黑用量为20 g、促进剂用量为0.8 g、硫磺用量为1.2 g、硬脂酸用量为0.8 g、氧化锌用量为2.2 g和橡胶用量为100 g时, 改性多孔钢渣/橡胶复合材料的力学性能较好, 即拉伸强度为18.4 MPa、邵尔A硬度为68.8、撕裂强度为44.6 kN·m-1.磷酸与硅烷KH550可以改善钢渣的孔结构与表面结构; 适量的促进剂/硫磺质量比与硬脂酸/氧化锌质量比可以消除硫磺形成的内硫环, 促使橡胶交联键稳定.改性多孔钢渣与橡胶以物理方式进行复合形成良好的包裹结构.   相似文献   

13.
The structural behavior of masonry walls laterally strengthened with externally bonded composite materials to resist out-of-plane loads is theoretically and experimentally studied. Hollow concrete block masonry walls and solid autoclaved aerated concrete (AAC) block masonry walls are examined. A theoretical model that accounts for the cracking and the physical nonlinear behavior, the debonding of the composite layers, the arching effect, the interfacial stresses, and the unique modeling aspects of the laterally strengthened wall is presented. The experimental study includes loading to failure of 4 laterally strengthened masonry walls and 2 control walls. The experimental and analytical results point at the unique aspects of the lateral strengthening of masonry walls with composite materials. In particular, they reveal and explain the premature shear failure in laterally strengthened hollow concrete blocks walls and, on the other hand, demonstrate the potential of lateral fiber-reinforced polymer strengthening of AAC masonry walls. The laterally strengthened AAC masonry walls reveal improved strength, deformability, and integrity at failure characteristics.  相似文献   

14.
This article describes room-temperature and high-temperature mechanical properties, as well as oxidation behavior, of a niobium-niobium silicide basedin situ composite directionally solidified from a Nb-Ti-Hf-Cr-Al-Si alloy. Room-temperature fracture toughness, high-temperature tensile strength (up to 1200 °C), and tensile creep rupture (1100 °C) data are described. The composite shows an excellent balance of high- and low-temperature mechanical properties with promising environmental resistance at temperatures above 1000 °C. The composite microstructures and phase chemistries are also described. Samples were prepared using directional solidification in order to generate an aligned composite of a Nb-based solid solution with Nb3Si- and Nb5Si3-type silicides. The high-temperature mechanical properties and oxidation behavior are also compared with the most recent Ni-based superalloys. This composite represents an excellent basis for the development of advanced Nb-based intermetallic matrix composites that offer improved properties over Ni-based superalloys at temperatures in excess of 1000 °C.  相似文献   

15.
In recent years some clinical reports have associated suture failures with polypropylene monofilaments. Therefore there is interest in developing an alternative suture material that is less thrombogenic than polyester and similar in handling characteristics but less prone to mechanical failure than polypropylene. To this end, Peters Laboratoire Pharmaceutique has developed a new monofilament suture material from polyvinylidene fluoride (PVDF), which has been subjected to a special treatment to modify its crystalline form and level of crystallinity. The purpose of this study was to evaluate its mechanical, chemical, and biologic properties and to compare its performance, in a peripheral vascular application, to that of a polypropylene control. A series of in vitro tests were performed to study the morphology, tensile properties, creep, surface chemistry, thermal characteristics, and resistance to iatrogenic trauma. In addition, an in vivo trial was undertaken in which vascular prostheses anastomosed with either PVDF or polypropylene sutures were implanted as a thoracoabdominal bypass for 6 months in the dog. Histologic and degradation analyses were performed on the explants. The results from the mechanical tests on 4-0, 5-0, and 6-0 PVDF and polypropylene sutures demonstrated that although both materials have similar breaking strengths, the PVDF has a higher extension at break, has less delayed extension when under tensile creep testing, and suffers less trauma than the polypropylene when compressed by a standard needle holder. While chemical analyses found evidence of surface oxidation on both types of sutures, thermal analysis confirmed that the level of crystallinity of the PVDF polymer is higher than that of the polypropylene control. During the pilot study in animals, PVDF sutures were found to have good handling and frictional characteristics that facilitated the tying of knots. Histologic analysis of the explants found no inflammatory cells in the tissue surrounding either the PVDF or polypropylene sutures, and scanning electron microscopic examination of the cleaned suture surfaces found no evidence of degradation during 6 months in vivo. Though preliminary in nature, these findings indicate that monofilament sutures made from PVDF provide an attractive alternative to those made from polypropylene for use in cardiovascular surgery. In addition to providing acceptable in vivo behavior and being easy to manipulate and more resistant to iatrogenic injury, PVDF materials can be sterilized by beta or gamma radiation and so can reduce dependence upon ethylene oxide and chlorofluorohydrocarbons.  相似文献   

16.
Conclusions The relation has been established between the relative density of hot-pressed materials based on molybdenum disulfide and temperature, time, and applied pressure. The process of densification of a mixture of molybdenum disulfide and molybdenum powders in hot pressing is described by a volume viscous-flow equation allowing for the nonlinear dependence of the rate of flow of the solid phase of the porous material on stress. The effective rate of creep of the solid phase in hot pressing (1400°C) is inversely proportional to the gas pressure in the closed pores. Reduced rates of steady-state creep have been calculated, and the exponent n indicative of linearity of flow of the solid phase forming the porous solid has been determined.Translated from Poroshkovaya Metallurgiya, No. 5(209), pp. 36–39, May, 1980.  相似文献   

17.
Biodegradable barrier films were made by coagulating a solution of poly(DL-lactide) in N-methyl-2-pyrrolidone on porous polyethylene pads wetted with saline solution. The semisolid films were cut into 10 x 10 mm barriers and implanted subcutaneously in rabbits. At monthly intervals, the polymer implant sites were compared histologically to those implanted with USP negative control plastic. The polymer films were retrieved from the surrounding tissue, dried, weighed, and the changes in molecular weight determined using gel permeation chromatography. The molecular weight of the polymer decreased at a relatively constant rate over 5 months; however, no significant mass loss occurred until 5 months postimplantation. Also, no distinct histological differences were noted between the polymer barrier and the control plastic sites until 6 months when histiocytes and multinucleated giant cells showed a modest increase around fragmented polymer films. Similar barrier films also were fitted over naturally occurring buccal dehiscence defects in beagle dogs and the tissue sites compared histologically at 6 months to sham-operated control sites. New bone and dense connective tissues closely approximated segments of the remaining polymer and demonstrated the biocompatibility of the biodegradable films. Histomorphometric analyses of treated sites compared to sham controls showed that the polymer barrier is effective in promoting bone and cementum regeneration in periodontal defects in dogs.  相似文献   

18.
随着电动汽车的不断普及,锂离子电池(LIBs)的安全性备受关注。目前固态锂离子电池具有能量密度高和安全性好的优势,被认为是解决传统液态锂金属电池安全隐患和提高其循环性能的关键材料。然而,单一形式的固态电解质存在离子电导率低、界面阻抗大等问题,限制了固态锂离子电池的发展。近年来,基于无机填料与聚合物电解质的有机-无机复合电解质受到了广泛关注,有机-无机复合固态电解质兼有聚合物与无机填料的优点,一方面可以提高柔韧性,另一方面可以有效提高电池的机械性能。本文归纳总结了有机聚合物与无机金属氧化物复合固态电解质的不同类型,分析了基于不同聚合物与无机金属氧化物复合形成的有机-无机复合固态电解质对锂离子电池复合界面行为、离子电导率、电池机械性能的影响,并对复合固态电解质制备和应用过程中存在的问题和解决方法进行了梳理。最后对聚合物基复合金属氧化物固态电解质未来要重点解决的问题和发展方向进行了预测。  相似文献   

19.
A temperature-accelerated tensile testing program was conducted in this study to characterize a woven polypropylene geotextile regarding its long-term stress–strain response, creep failure, and tensile strength remaining after sustained creep loading. Specimens were tested in a load frame that allowed control of multistage load paths. Consistent with current standards for rapid loading of geotextiles, roller-type grips capable of accommodating wide-width (200-mm) specimens were used in this study. The test program included: (i) Rapid loading tensile tests at room and elevated temperatures; (ii) conventional and temperature-accelerated creep tests; and (iii) rapid loading tensile tests conducted after sustained creep loading. Creep strain data for periods beyond 100 years were collected at various load levels using 8-h long tests involving the stepped isothermal method. The creep–failure curve, traditionally defined as time to rupture for sustained creep loading at various load levels, was defined in this study as the deviation of the creep curve from linear behavior in a semilogarithmic scale. A new approach was implemented to quantify and reference the residual tensile strength obtained from rapid loading at elevated temperatures of specimens that had been subjected to sustained creep. In spite of the significant slope in the creep-failure curve of the geosynthetic tested in this study, the residual tensile strength exceeds 90% of the ultimate tensile strength. An alternative to the current design approach, which involves use of creep-failure curves to define creep reduction factors is proposed. This involves use of creep-induced tensile strength loss, creep failure, and creep strains in the design of reinforced soil structures.  相似文献   

20.
聚酰亚胺气凝胶材料的制备及其应用   总被引:1,自引:0,他引:1       下载免费PDF全文
聚酰亚胺(polyimide,PI)由于具有较好的力学性能、优异的耐化学性、良好的介电性能和高温稳定性,被认为是一种应用前景广泛的高温工程聚合物。聚酰亚胺的各类制品如薄膜、涂料、胶黏剂、光电材料、先进复合材料、微电子器件、分离膜以及光刻胶等已经被广泛应用于电子信息、防火防弹、航空航天、气液分离以及光电液晶等领域。聚酰亚胺气凝胶(PIA)是由聚合物分子链构成的相互交联的三维多孔材料,结合了聚酰亚胺和气凝胶的优异性能,使其不但具有聚酰亚胺的优异特性,而且具有气凝胶的轻质超低密度、高比表面积、低导热系数以及低介电常数等突出特点,因此聚酰亚胺气凝胶材料迅速发展成为性能优异的有机气凝胶之一,并且在航空航天、电子通讯、隔热阻燃、隔音吸声以及吸附清洁等领域展示出广阔的应用前景。鉴于该材料的这些特质,本文对聚酰亚胺气凝胶的制备方法、影响因素(溶剂效应、单体结构和固含量)以及应用进行了论述,并对聚酰亚胺气凝胶材料的未来发展进行了展望。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号