首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 663 毫秒
1.
2.
Reduced fat processed cheeses were prepared with granular or hydrogenated soy lecithin. Trained sensory panelists (n = 11) determined that reduced-fat cheeses containing lecithin were more similar in texture attributes to full-fat control cheeses than reduced fat cheeses without lecithin (P<0.05). Consumer flavor and acceptance scores (n =60) for cheeses with lecithin were not different from control cheeses, but texture acceptance scores for cheeses with lecithin were higher than scores for reduced fat control cheeses (P.0.05). Cheeses containing lecithin were less elastic than reduced fat control cheeses as determined by sensory panels and instrumental percent creep recovery. Lecithin improved processed cheese texture without negatively affecting acceptance.  相似文献   

3.
The Texture of Commercial Full-Fat and Reduced-Fat Cheese   总被引:1,自引:0,他引:1  
  相似文献   

4.
Textural, melting, and sensory characteristics of reduced-fat Cheddar cheeses made with exopolysaccharide (EPS)-producing and nonproducing cultures were monitored during ripening. Hardness, gumminess, springiness, and chewiness significantly increased in the cheeses as fat content decreased. Cheese made with EPS-producing cultures was the least affected by fat reduction. No differences in hardness, springiness, and chewiness were found between young reduced fat cheese made with a ropy Lactococcus lactis ssp. cremoris [JFR1; the culture that produced reduced-fat cheese with moisture in the nonfat substance (MNFS) similar to that in its full-fat counterpart] and its full-fat counterpart. Whereas hardness of full-fat cheese and reduced-fat cheese made with JFR1 increased during ripening, a significant decrease in its value was observed in all other cheeses. After 6 mo of ripening, reduced fat cheeses made with all EPS-producing cultures maintained lower values of all texture profile analysis parameters than did those made with no EPS. Fat reduction decreased cheese meltability. However, no differences in meltability were found between the young full-fat cheese and the reduced-fat cheese made with the ropy culture JFR1. Both the aged full- and reduced-fat cheeses made with JFR1 had similar melting patterns. When heated, they both became soft and creamy without losing shape, whereas reduced-fat cheese made with no EPS ran and separated into greasy solids and liquid. No differences were detected by panelists between the textures of the full-fat cheese and reduced-fat cheese made with JFR1, both of which were less rubbery or firm, curdy, and crumbly than all other reduced-fat cheeses.  相似文献   

5.
6.
Ten commercial Cheddar cheeses of variable quality differing in fat content and age were subjected to compositional, proteolytic, lipolytic and sensory analyses. The compositional parameters of the full-fat cheeses were predominantly outside those typically associated with good-quality cheese. Sensory analysis discriminated the full-fat cheeses predominantly by age, with the longer ripened cheeses associated with more negative attributes, some which appeared to be due to excessive lipolysis and/or β-casein breakdown. Both proteolysis and lipolysis appear to be age dependent. The two reduced-fat cheeses were clearly discriminated from the eight full-fat cheeses by sensory analysis that appeared to be due to differences in composition and the extent of lipolysis.  相似文献   

7.
8.
Cheeses with 60% reduced fat content were prepared with three commercial fat mimetics. Low-fat cheeses without added fat mimetics and full-fat cheeses were prepared as controls. Cheeses were aged 3 months prior to sensory and instrumental evaluation. A low-fat cheese containing one of the fat mimetics received the highest texture scores from dairy judges and consumer panelists (P≤0.05). The low-fat control and another cheese with a fat mimetic received higher flavor scores from the trained dairy judges and consumer panelists than the other cheeses containing fat mimetics (P≤0.05). Low-fat cheeses containing fat mimetics were less rubbery than the low-fat control cheese (P≤0.05).  相似文献   

9.
A current industry goal is to produce a 75 to 80% fat-reduced Cheddar cheese that is tasty and appealing to consumers. Despite previous studies on reduced-fat cheese, information is critically lacking in understanding the flavor and flavor chemistry of reduced-fat and nonfat Cheddar cheeses and how it differs from its full-fat counterpart. The objective of this study was to document and compare flavor development in cheeses with different fat contents so as to quantitatively characterize how flavor and flavor development in Cheddar cheese are altered with fat reduction. Cheddar cheeses with 50% reduced-fat cheese (RFC) and low-fat cheese containing 6% fat (LFC) along with 2 full-fat cheeses (FFC) were manufactured in duplicate. Cheeses were ripened at 8°C and samples were taken following 2 wk and 3, 6, and 9 mo for sensory and instrumental volatile analyses. A trained sensory panel (n = 10 panelists) documented flavor attributes of cheeses. Volatile compounds were extracted by solid-phase microextraction or solvent-assisted flavor evaporation followed by separation and identification using gas chromatography-mass spectrometry and gas chromatography-olfactometry. Selected compounds were quantified using external standard curves. Sensory properties of cheeses were distinct initially but more differences were documented as cheeses aged. By 9 mo, LFC and RFC displayed distinct burnt/rosy flavors that were not present in FFC. Sulfur flavor was also lower in LFC compared with other cheeses. Forty aroma-active compounds were characterized in the cheeses by headspace or solvent extraction followed by gas chromatography-olfactometry. Compounds were largely not distinct between the cheeses at each time point, but concentration differences were evident. Higher concentrations of furanones (furaneol, homofuraneol, sotolon), phenylethanal, 1-octen-3-one, and free fatty acids, and lower concentrations of lactones were present in LFC compared with FFC after 9 mo of ripening. These results confirm that flavor differences documented between full-fat and reduced-fat cheeses are not due solely to differences in matrix and flavor release but also to distinct differences in ripening biochemistry, which leads to an imbalance of many flavor-contributing compounds.  相似文献   

10.
The sensory character of 16 samples of commercial, processed cheese spread has been characterized. Samples were selected to provide information on variations both between brands and, for products differing in fat content, within brands. Products were rated for eight flavour attributes and six textural attributes by a panel of 13 professional assessors. Significant differences in both the flavour and the texture of the spreads were associated with brand. No systematic differences were found between the flavour attributes and the fat content of the spread. However, differences were revealed between spreads – classified on the basis of fat content as regular, light and ultra light – in the sensory dimensions associated with texture and mouth feel. Nevertheless, within some brands the effect of reducing fat content was minimal. This result was probably achieved by other changes in product formulation.  相似文献   

11.
Changes in chemical composition, proteolysis, lipolysis, texture, melting and sensory properties of low-fat Kashar cheese made with three different fat replacers (Simplesse D-100, Avicel Plus CM 2159 or beta-glucan) were investigated throughout ripening. The low-fat cheeses made with fat replacers were compared with full- and low-fat counterparts as controls. Reduction of fat caused increases in moisture and protein contents and decreases in moisture-in-non fat substance and yield values in low-fat cheeses. The use of fat replacers in the manufacture of low-fat Kashar cheese increased water binding capacity and improved overall quality of the cheeses. Use of fat replacer in low-fat cheese making has enhanced cheese proteolysis. All samples underwent lipolysis during ripening and low-fat cheeses with fat replacers had higher level of total free fatty acid than full- or low-fat control cheeses. Texture attributes and meltability significantly increased with addition of fat replacers. Sensory scores showed that the full-fat cheese was awarded best in all stages of ripening and low-fat variant of Kashar cheeses have inferior quality. However, fat replacers except beta-glucan improved the appearance, texture and flavour attributes of low-fat cheeses. When the fat replacers are compared, the low-fat cheese with Avicel Plus CM 2159 was highly acceptable and had sensory attributes closest to full-fat Kashar cheese.  相似文献   

12.
The microstructure of reduced- and full-fat Cheddar cheeses made with exopolysaccharide (EPS)-producing and nonproducing cultures was observed using cryo-scanning electron microscopy. Fully hydrated cheese samples were rapidly frozen in liquid nitrogen slush (−207°C) and observed in their frozen hydrated state without the need for fat extraction. Different EPS-producing cultures were used in making reduced-fat Cheddar cheese. Full-fat cheese was made with a commercial EPS-nonproducing starter culture. The cryo-scanning electron micrographs showed that fat globules in the fully hydrated cheese were surrounded by cavities. Serum channels and pores in the protein network were clearly observed. Young (1-wk-old) full-fat cheese contained wide and long fat serum channels, which were formed because of fat coalescence. Such channels were not observed in the reduced-fat cheese. Young reduced-fat cheese made with EPS-nonproducing cultures contained fewer and larger pores than did reduced-fat cheese made with a ropy strain of Lactococcus lactis ssp. cremoris (JFR1), which had higher moisture levels. A 3-dimensional network of EPS was observed in large pores in cheese made with JFR1. Major changes in the size and distribution of pores within the structure of the protein network were observed in all reduced-fat cheeses, except that made with JFR1, as they aged. Changes in porosity were less pronounced in both the full-fat and the reduced-fat cheeses made with JFR1.  相似文献   

13.
Reduced Fat Food Emulsions: Physicochemical,Sensory, and Biological Aspects   总被引:1,自引:0,他引:1  
Fat plays multiple important roles in imparting desirable sensory attributes to emulsion-based food products, such as sauces, dressings, soups, beverages, and desserts. However, there is concern that over consumption of fats leads to increased incidences of chronic diseases, such as obesity, coronary heart disease, and diabetes. Consequently, there is a need to develop reduced fat products with desirable sensory profiles that match those of their full-fat counterparts. The successful design of high quality reduced-fat products requires an understanding of the many roles that fat plays in determining the sensory attributes of food emulsions, and of appropriate strategies to replace some or all of these attributes. This paper reviews our current understanding of the influence of fat on the physicochemical and physiological attributes of food emulsions, and highlights some of the main approaches that can be used to create high quality emulsion-based food products with reduced fat contents.  相似文献   

14.
15.
Response surface methodology (RSM) was employed for simultaneous analysis of the effects of added surimi (0-40%), fat (5-30%) and water (10-35%), on the physical, textural and sensory characteristics of fresh breakfast pork sausages. Experimental design allowed for evaluation of potential interactive effects between these ingredients. Sausages were evaluated for texture, colour, water holding capacity (WHC) and sensory attributes. Three optimum recipes, R1 (25.3% surimi, 22.2% fat, 12.7% water, 25.3% pork), R2 (12.2% surimi, 5.5% fat, 38.7% water, 33.2% pork) and R3 (25.3% surimi, 6.3% fat, 28.5% water, 25.3% pork), were determined and these were evaluated against a full-fat commercial control (R4). Force values of R1 were not significantly different to R4, however, force values for R2 and R3 were lower (P<0.001). No significant differences were observed between R1, R3 and R4 for visual colour or sensory acceptability scores throughout the study, whereas scores for R2 were lower. Sensory analysis indicated that R2 had lower scores for texture (P<0.01), chewiness (P<0.01), acceptability (P<0.01), flavour (P<0.05) and preference (P<0.01). Results from this study suggest that it is possible to successfully replace pork meat with functional fish proteins in the manufacture of sausage type products.  相似文献   

16.
Reduced-fat foods have become more popular due to their health benefits; however, reducing the fat content of food affects the sensory experience. Therefore, it is necessary to improve the sensory acceptance of reduced-fat foods to that of full-fat equivalents. The aim of this study was to evaluate the effect of adding whey protein microgels (WPM) with an average diameter of 4 μm, or WPM with adsorbed anthocyanins [WPM (Ant)] on the textural and sensory properties of reduced-fat Cheddar cheese (RFC). Reduced-fat Cheddar cheese was prepared in 2 ways: (1) by adding WPM, designated as RFC+M, or (2) by adding WPM (Ant), designated as RFC+M (Ant). For comparison, RFC without fat substitutes and full-fat Cheddar cheese were also prepared. We discovered that the addition of WPM and WPM (Ant) increased the moisture content, fluidity, and meltability of RFC, and reduced its hardness, springiness, and chewiness. The textural and sensory characteristics of RFC were markedly inferior to those of full-fat Cheddar cheese, whereas addition of WPM and WPM (Ant) significantly improved the sensory characteristics of RFC. The WPM and WPM (Ant) showed a high potential as fat substitutes and anthocyanin carriers to effectively improve the acceptance of reduced-fat foods.  相似文献   

17.
18.
Normally, reduced-fat Cheddar cheese is made by removal of fat from milk prior to cheese making. Typical aged flavor may not develop when 50% reduced-fat Cheddar cheese is produced by this approach. Moreover, the texture of the reduced-fat cheeses produced by the current method may often be hard and rubbery. Previous researchers have demonstrated that aged Cheddar cheese flavor intensity resides in the water-soluble fraction. Therefore, we investigated the feasibility of fat removal after the aging of Cheddar cheese. We hypothesized the typical aged cheese flavor would remain with the cheese following fat removal. A physical process for the removal of fat from full-fat aged Cheddar cheese was developed. The efficiency of fat removal at various temperatures, gravitational forces, and for various durations of applied forces was determined. Temperature had the greatest effect on the removal of fat. Gravitational force and the duration of applied force were less important at higher temperatures. A positive linear relationship between temperature and fat removal was observed from 20 to 33 degrees C. Conditions of 30 degrees C and 23,500 x g for 5 min removed 50% of the fat. The removed fat had some aroma but little or no taste. The fatty acid composition, triglyceride molecular weight distribution, and melting profile of the fat retained in the reduced-fat cheeses were all consistent with a slight increase in the proportion of saturated fat relative to the full-fat cheeses. The process of fat removal decreased the grams of saturated fat per serving of cheese from 6.30 to 3.11 g. The flavor intensity of the reduced-fat cheeses were at least as intense as the full-fat cheeses.  相似文献   

19.
The effects of fat level (5, 12 and 30%) and maltodextrin on emulsion stability, cook loss, colour, texture and sensory characteristics of frankfurters were investigated. Three fat levels (5, 12 and 30%) were formulated containing added maltodextrin. For each fat level a control was prepared without added maltodextrin giving a total of 6 treatments (3×2 factorial design). Reducing the fat from 30 to 5% increased cook loss and decreased emulsion stability. Panellists detected an increase in juiciness and a decrease in overall texture, overall acceptability when the fat level was reduced from 30 to 5%. Instron texture profile analysis showed a decrease in hardness, chewiness and gumminess and an increase in springiness with decreasing fat level. Maltodextrin addition caused a significant decrease in cook loss of the frankfurters but also decreased the emulsion stability. An interactive effect (P<0.05) occurred between fat level and maltodextrin resulting in no significant difference in hardness, gumminess and chewiness values when maltodextrin was present in the reduced-fat (5 and 12%) frankfurters. Saltiness, overall flavour intensity, overall texture and overall acceptability were unaltered (P>0.05) by maltodextrin. The results indicate that maltodextrin can be used as a suitable fat replacer since it offset some of the changes brought about by fat reduction, decreasing cook loss and maintaining a number of textural and sensory characteristics of the frankfurters.  相似文献   

20.
Spent layer chickens, an underutilized, inexpensive source of animal protein in the United States, were used to produce an acceptable all chicken frank following mechanical deboning of the chicken parts without pregrinding. The franks were subjected to shear tests and compared to two well-known commercial brands of chicken franks for overall acceptability by an untrained 59 member panel. The franks produced from mechanically deboned spent layer chickens (Lab franks) had greater resistance to shear than the two commercial brands and the panelists showed significantly greater preference for one of the commercial brands. Comments of the panelists indicated the texture of the lab-prepared franks was tougher than the two commercial brands. However, 12 members of the panel stated the lab-frank texture was tender. Collagen content of the spent layer franks was no higher than for the commercial brands. It is therefore concluded that the toughness could have been due to the nature of the myofibrillar proteins. Such toughness could be modified by tenderizing enzyme treatment of the raw material to produce varying degrees of frank softness or firmness depending on consumer preference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号