首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
目前,对两轴平行度的测量,还缺少理想的检验装置和检验方法。为了评定两轴平行与否,很多企业采用的方法是:用螺旋千分表或游标卡尺测量两轴两端处外侧的距离,并计算出它们的差,以此来度量两轴的平行度误差。这种方法存在严重缺点,例如,当两轴处于交叉状态时(如图1),若A=A′,用上述方法测量,就会把严重不平行的两轴,误判为平行。  相似文献   

2.
连续可变扩束比的激光扩束系统   总被引:1,自引:0,他引:1  
叙述了如何设计一个连续可变扩束比的激光扩束系统的方法,并分析和推导了计算这个系统的公式。  相似文献   

3.
激光准直扩束设计和仿真   总被引:1,自引:0,他引:1  
从哈特曼法自动测量像差所需解决的准直(平行)光束出发,基于高斯先学理论,从工程角度分析了大倍率准直扩束系统的原理,实现了改变激光光束直径和发散角的准直扩束系统的设计,并通过仿真得到了验证,满足了光学系统的哈特曼像差测量要求.  相似文献   

4.
主要研究不扩束激光粉尘粒度分布测试系统,对光衍射式激光粒度测试系统的光学装置进行改进,将激光的扩束系统去除,改为不扩束激光衍射系统,减小了测试系统的体积,光学结构变得简单,调节更加方便,光敏区也大大减小,降低了样品的损耗。并且通过改进的采用CCD的不扩束激光粉尘颗粒粒度测试系统对粉体进行测试,获得衍射光强图像,并利用计算机对衍射图像的光强分布作了分析。  相似文献   

5.
介绍了国内外激光扩束系统的研究现状,阐述了低倍率扩束系统设计原理,选用没有内部焦点的倒置伽利略式望远镜系统结构设计了一个无焦变倍的激光扩束准直系统。在Zemax软件中实现变倍扩束系统初始结构的设计,基于Zemax的REAY优化函数对光学系统中透镜的曲率半径和间距进行优化,实现5~25倍的连续变倍激光扩束。不同倍率下的波像差最大均方根值均小于λ/40,设计结果满足像质要求。经工艺分析,该设计符合加工的工艺要求,系统结构简单,具有实际应用价值。  相似文献   

6.
周仁淦 《机械制造》1999,37(12):36-37
介绍一种检测机床导轨平行度的装置和数据处理方法,该装置结构简单,测量精确,稳定可靠,有实用推广价值。  相似文献   

7.
为研究闪电特性,设计了用于闪电实验室场景模拟的大变倍比近红外无焦激光扩束光学系统,用于模拟不同光斑尺寸的闪电单元.根据高斯光学几何法计算系统外形尺寸,合理确定了各组份的口径及光焦度;由ZEMAX软件包优化设计得到系统的光学结构参数,并对系统整体性能进行了分析评价.该系统变倍比为13,出射光束光斑均匀、无衍射环,满足研究闪电信号特性的需求.激光扩束系统的中心工作波长为777.4 nm,入射光束直径为1.0 mm,入射激光光束在步进电机驱动下连续可调,使得出射光束可从φ0.8 mm变化到φ10.6 mm.系统具有镜片少,结构简单,变焦轨迹平滑无卡滞等优点,可用于模拟不同尺寸的闪电单元.  相似文献   

8.
检测机床导轨平行度误差一般采用如图1所示方法,图1a所示的方法要求千分表支架具有非常高的刚性,否则测量数据难以稳定,因此它只能用于两导轨距离较小条件下的测量。当两导轨间距离较大时,要用图1b所示专用检测桥和水平仪来测量,但它只能测量两条导轨在垂直平面内的平行度误差,难以直观地反映导轨间的平行度。这里介绍一种用自准直仪和专用检测装置测量导轨间平行度的方法,它能测量两导轨在水平和垂直平面内的平行度误差。  相似文献   

9.
激光跟踪测量系统是目前最新型的便携式空间大尺寸坐标测量系统,利用激光干涉测长、精密测角及目标跟踪技术,可对任意点的空间位置进行实时跟踪测量。然而,目标反射器接收角度的大小严重影响了激光跟踪测量系统角度测量精度,为解决激光跟踪测量系统在动态测量中因角锥棱镜逆反射器接收角度范围限制而导致无法测量问题,研制开发了一种能使激光跟踪测量系统在动态条件下连续测量的角度自动校正装置。它主要由精密圆形导轨和角度方位自动调节机构组成,能使角锥棱镜在动态测量过程中始终指向激光跟踪测量系统,从而实现在动态条件下的连续工作。最后利用研制角度自动校正装置对激光跟踪测量系统进行了角度误差补偿实验,结果表明该装置使激光跟踪测量系统的水平角测量误差由34.69µm减小到9.71µm,垂直角测量误差由35.43µm减小到10.03µm,从而有效地提高了激光跟踪测量系统的角度测量精度。  相似文献   

10.
如图1所示工件的线对线平行度误差可按GB1958—80中平行度误差检测方案1~10进行检测,即将被测零件放在等高支承上测量平行度误差。本文介绍一种不需使基准轴线平行于平板,主要通过数学计算求得平行度的方法。一、测量步骤1.如图2所示将心轴2与孔成无;司隙配合地插入孔中,测量被测孔模拟心轴1上长度为I。的A、B两点的高度代数差凸。。。设OO’为X轴,Y轴与X轴垂直,则上。。一y。一y。,测量基准孔模拟心轴2两端长度为Lb的C、D两点高度代数差上CD—yC一yD,如果忽略心轴制造误差可以认为西BA、凸CD为对应孔中心的高度差,但如…  相似文献   

11.
赵斌  李虎 《光学仪器》2002,24(6):3-6
在无衍射光测量直线度系统中 ,常常采用锥透镜作为产生无衍射光的元件。要实现长距离的直线度测量 ,则必须采用大口径锥透镜 ,制造成本较高 ,整个系统体积比较大。提出一种用偏转抛物镜系统来替代锥透镜产生无衍射光束 ,可以实现大口径无衍射光束。具有成本低 ,精度较高 ,实现方法简单等优点。  相似文献   

12.
利用手持式激光测距仪和二轴转台,设计了一种经济型大尺寸激光三维自动测量系统,用于船舶等大型工件的现场测量.介绍了系统的测量原理和主要组成部分,系统无需合作目标,在计算机的控制下自动对目标进行测量来获得相对系统的三维坐标数据.分析了系统的主要误差对测量结果的影响,完成了主要误差的提取实验.最后,利用激光跟踪仪对系统测试水平两点间的距离的测量精度进行了评定,并对船分段模型进行了测量实验.实验表明,该系统对水平放置物体的两点间距离的测量精度达到了1.73 mm,对船分段模型的平行平面之间的距离测量精度达到了1.5 mm.由于系统构成简单,硬件成本较低,测量精度较高,测量速度大约为1 point/s,非常适用于船分段的测量.  相似文献   

13.
激光跟踪测量系统是目前最新型的便携式空间大尺寸坐标测量系统,但在测量大型被测对象时,人工布点及测量过程繁杂,测量效率低,并造成被测对象几何形状变形,严重影响其测量精度。为解决以上问题,提出了新型的“光束运动—光靶跟踪”激光跟踪测量方法,建立了新型激光跟踪测量方法论,并在此理论基础上,研制开发了一种能够在水平和垂直被测对象表面上运动小型轮臂复合式激光制导测量机器人。该机器人机构融合轮式机构、爬行臂式结构和真空吸附式机构优点,并且具有重量轻、体积小、运动灵活和反应快速等特点,可以根据不同的被测对象表面特征变换测量模式,利用轮式结构实现机器人在水平被测表面上高速远距离运动,利用爬行臂式和真空吸附式机构实现机器人在倾斜光滑表面上灵活地爬行和转向。对其运动特性进行了详细的分析。最后利用激光跟踪仪和三坐标测量机对研制激光制导测量机器人进行了性能测试,试验结果证明了该机器人能跟踪激光束自动高效地完成被测对象实体测量。  相似文献   

14.
为了进一步提高激光光束用作直线基准的精度,建立了基于反射镜平动式光束稳定器以及两点式光束漂移分离法的高精度激光光束准直系统。首先,对系统中基于反射镜平动的光束稳定器进行研究,对其光束偏转原理以及影响因素进行分析,并对两点式光束漂移分离方法进行介绍。然后,对光束偏转单元的分辨力以及偏转范围、所使用的压电陶瓷非线性和迟滞特性、以及光束偏转单元的频率响应特性进行实验测试。最后,对该激光准直系统的激光光束准直精度进行测试。实验结果表明本文提出的光束偏转单元在120μrad范围内的光束偏转分辨力可以达到5 nrad,频率响应特性高于2 kHz;最终激光准直系统的准直精度在二维方向上分别达到1.9×10^-8 rad和2.1×10^-8 rad,相对于现有技术约提高了3倍,满足激光光束用作高精度直线基准的需求。  相似文献   

15.
卫星激光测距中发射光路光机结构设计   总被引:4,自引:0,他引:4  
在卫星激光测距过程中,为了保证望远镜系统接收更多的能量,必须压缩出射激光光束的发散角,减小照射到卫星上的激光光斑尺寸。激光发射系统的主要作用是就将激光器发出光束进行直径放大并准直,是卫星激光测距光机系统中的重要组成部分。在研制某型号卫星激光测距系统中,根据技术指标对两级扩束光学系统、机械结构以及二维电动调整机构进行了详细论述和设计。实践证明,该套系统的光学系统在进行激光光束扩束、准直的同时,通过二维电动调整机构实现了实时调整激光光束的出射方向,满足了设计指标的要求。  相似文献   

16.
激光调阻机多档测量误差的软件自适应校正   总被引:3,自引:0,他引:3  
为了减小激光调阻机测量系统的多档测量误差对阻值修调精度的影响,提出了一种基于有源单臂电桥测量原理自适应地校正激光调阻机多档测量误差的方法.通过测量和标定高精度标准电阻的测量误差,自适应地获取校正激光调阻机多档测量误差的系列修正值,进而用系列修正值对所有待修调电阻的阻值测量误差进行校正,达到进一步减小系统测量误差的目的.实践证明,在测量硬件电路保证高稳定性、微小波动性测量的前提下,应用该方法可使测量系统的精度指标达到:低阻区(R<100Ω)为±0.5‰;中阻区为±0.2‰;高阻区(R≥1MΩ)为±2‰.  相似文献   

17.
孙毅  高云国  邵帅 《光学精密工程》2015,23(11):3097-3106
提出利用镀膜合束的方法对三路光束进行合束用于高功率红外激光合束系统设计。考虑系统中关键元件使用的红外材料ZnSe易受热效应影响,采用光机热耦合分析方法,研究了在温度边界条件固定时,各波段激光所产生的耦合热效应对各路激光波前畸变的影响,同时定性分析了系统中存在的激光偏置热效应。研究结果显示,系统中各波段的激光波前畸变均方根值(RMS)均满足设计要求(各波段波前畸变小于λ/8);激光偏置造成的波面高频成分增大了长波激光波前畸变量,但高频成分对系统波前畸变影响依然满足要求;轴向温差可在35s达到平衡,对光束波前造成主要影响的是各块镜片的面型畸变。根据分析结果搭建了实验平台,利用系统中短波400 W激光进行实验,采集了该条件下的面型并与仿真结果进行了对比,实验结果验证了该分析方法计算结果的准确性。  相似文献   

18.
为了准确测量高能激光系统远场到靶总能量和功率密度时空分布等参数,本文提出了量热吸收法和光电探测阵列法相结合的复合式测量方法.该方法由热吸收体测量入射激光的总能量,由光电探测阵列测量光斑的时空分布.研制了用于大面积、长脉冲近红外高能激光测量的复合式光斑时空分布探测器.探测器主要由石墨热吸收体、近红外探测器阵列、测温单元和信号处理单元等组成,有效测量光斑面积达到22 cm×22 cm,光斑测量空间分辨力为1.1 cm,时间分辨力为20 ms.该测量系统同时兼顾了光电探测阵列法的高时空分辨能力和量热吸收法的低测量不确定度等优点,适合于高能量、大面积近红外高能激光光斑参数的综合测量,并已成功应用于外场实验.  相似文献   

19.
For the purpose of measuring free form surfaces of some key parts in the aviation field accurately and effectively, such as blades, a non-contact optical coordinate measuring system is set up in the paper. A laser displacement sensor is mounted on the Z axis of a CMM via a turntable and adjusted to the suitable orientation according to the shape of the target surface. The combination of optical sensor and CMM can reach the full potential of them both. To enable the laser sensor to perform measurement in every direction, a calibration method used to determine the laser beam direction based on a standard sphere is proposed, the principle of which is analyzed in detail in the paper. In the calibration procedure, the sensor moves at an equal step along X, Y and Z axes respectively and then equation sets are established to calculate the unit direction vector of the line which the laser beam is on. In the process of solving the unknown quantities, a new parameter substitution method is applied. Finally, a gauging block and a sphere with known size are used to verify the method. As the experimental results show, the measuring errors in several directions are all smaller than 0.05 mm, which manifests that the calibration method proposed can meet the requirements of reverse engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号