首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
四旋翼飞行器轨迹跟踪控制器的设计与验证   总被引:1,自引:0,他引:1       下载免费PDF全文
为了解决四旋翼飞行器在外界扰动影响和系统模型参数存在不确定性情况下的精确轨迹跟踪控制问题,设计并验证了一种四旋翼飞行器的非线性轨迹跟踪控制器。首先建立了考虑执行机构特性的四旋翼飞行器数学模型,并将虚拟控制量映射到了实际中对电机的控制;然后通过在反步法轨迹跟踪控制中加入积分项,设计了一种基于积分型反步法的非线性轨迹跟踪控制器,消除模型参数不确定性及外界干扰引起的误差,仿真结果验证了该方法的可行性;最后,利用QBall2四旋翼飞行实验平台,对所设计的非线性轨迹跟踪控制器进行验证,实际飞行实验结果表明了所设计控制器的有效性,提高了实际飞行过程中外界干扰和不确定性下的四旋翼飞行器轨迹跟踪控制的精度。  相似文献   

2.
针对微型飞行器的姿态角摄动引起的系统不确定性及外界干扰等问题,提出了基于区间二型模糊神经网络辨识的增益自适应模糊控制器.首先,给出了微型飞行器姿态动力学模型.然后,采用区间二型模糊神经网络对滑模控制器中由于姿态角摄动引起的系统不确定性进行在线辨识,通过增益自适应滑模控制器中的校正控制项对辨识误差及负载干扰进行补偿.最后,通过设计李亚普诺夫函数,得到闭环系统一致稳定条件下的区间二型模糊神经网络参数在线调整的自适应律及滑模增益自适应律.仿真对比表明,与传统的增益自适应滑模控制器和基于一型模糊神经网络辨识的滑模控制器及相比,本文提出的控制器不仅对系统的不确定性因素及外界干扰具有较强的鲁棒性,而且稳定误差小,跟踪精度高.  相似文献   

3.
针对四旋翼飞行器在复杂飞行条件下速度不可测的轨迹跟踪控制问题,考虑系统存在外界未知干扰和模型参数不确定的情况,提出了一种基于扩张观测器的轨迹跟踪控制方法。该方法设计了积分型反步法跟踪控制器,以降低系统的稳态误差,并引入了状态扩张观测器,来估计系统未知速度信息,同时对干扰和模型参数不确定因素进行实时估计并给予补偿;最后,选取李雅普诺夫函数证明了该控制系统的稳定性。以Quanser公司的Qball2四旋翼飞行器为研究对象和飞行实验平台,对所设计的控制器进行验证。实验结果表明,本文所设计的基于扩张观测器的轨迹跟踪控制器,能够有效地估计轨迹跟踪控制过程中的未知速度信息,解决外界未知干扰和模型参数不确定的问题,增强对环境的适应能力,有效提高了飞行器对未知干扰的鲁棒性和轨迹跟踪控制的精确性。  相似文献   

4.
基于神经网络针对一类具有输入不确定性的非线性系统提出了一种H∞自适应跟踪控制方法.控制器由等效控制器、H∞控制器及参数自适应控制器三部分组成.H∞控制器用于减弱外部及神经网络的逼近误差对跟踪性能的影响,参数自适应控制器用于抑制输入干扰对跟踪性能的影响.所设计的控制器不仅保证了整个闭环系统的稳定性,而且使外部干扰及神经网络的逼近误差对跟踪的影响减小到给定的性能指标.最后给出一个算例验证了该方法的有效性.  相似文献   

5.
基于神经网络针对一类具有输入不确定性的非线性系统提出了一种H∞自适应跟踪控制方法.控制器由等效控制器、H∞控制器及参数自适应控制器三部分组成.H∞控制器用于减弱外部及神经网络的逼近误差对跟踪性能的影响,参数自适应控制器用于抑制输入干扰对跟踪性能的影响.所设计的控制器不仅保证了整个闭环系统的稳定性,而且使外部干扰及神经网络的逼近误差对跟踪的影响减小到给定的性能指标.最后给出一个算例验证了该方法的有效性.  相似文献   

6.
四旋翼飞行器的模型参数具有不确定性和时变性,在复杂环境下执行任务时容易受到外界环境的干扰,导致常规控制器很难使四旋翼按照期望的轨迹稳定飞行。针对这一问题,基于Lyapunov稳定理论设计了一种性能优越的模型参考自适应控制方法。首先对四旋翼飞行器进行动力学建模,然后基于模型设计了自适应控制律。仿真结果表明,与常规PID控制方法相比,自适应控制方法能有效改善飞行过程中的漂移和震动,提高飞行器的抗干扰能力和自我调节能力。  相似文献   

7.
针对四旋翼无人机的姿态控制与轨迹跟踪问题,提出了一种模型参考自适应滑模控制。考虑到四旋翼无人机模型的不确定性以及所受的外界气流干扰,根据模型参考自适应控制的思想,利用无干扰时的理想参考模型与实际系统的输出偏差对外界气流干扰以及模型不确定的慢时变部分进行自适应估并补偿。同时采用滑模控制来抑制外界干扰和模型不确定性造成的影响,通过Lyapunov理论证明了该算法可以使系统稳定。最后通过对比仿真,验证了所提出算法的有效性和鲁棒性。  相似文献   

8.
针对四辊卷板机侧辊位移跟踪控制存在负载变化、参数摄动和未建模动态等不确定性问题,提出一种基于非线性扰动观测器的自适应滑模控制策略。采用非线性扰动观测器在线获取并补偿等效扰动;针对引入非线性扰动观测器后的系统,采用反步法设计自适应滑模控制器,利用自适应律动态补偿扰动观测误差,以降低滑模控制器的切换增益。该设计方法放宽了滑模切换增益对系统不确定性上界的先验性要求,降低了外界干扰和系统不确定性对侧辊位移跟踪性能的影响。同时,采用李雅普洛夫方法证明了侧辊位移跟踪闭环控制系统的稳定性。根据工程实际参数进行仿真,结果表明,该控制策略对系统的不确定性,特别是负载变化具有较强的鲁棒性,可以满足侧辊位移快速、精确跟踪的要求。  相似文献   

9.
气动干扰下的Hex-Rotor无人飞行器控制器及其飞行实验   总被引:1,自引:0,他引:1  
分析了气流扰动、翼间干扰等因素对飞行中的无人飞行器的控制精度和效果产生的影响,并给出了相应的解决方法。建立了Hex-Rotor飞行器的动力学模型,分析了升力因子不确定性导致飞行器控制效果下降的影响因素。设计了反演滑模控制器来控制飞行器的空间六自由度运动,同时考虑升力因子的不确定性采用超螺旋非线性观测器观测各个旋翼的升力因子来克服气动干扰的影响。通过原型机验证了提出的方法,结果显示:Hex-Rotor飞行器在气动干扰较大的外部环境中飞行时,水平位移跟踪误差不超过±4.5m,高度误差不超过±2.5m,姿态角度误差保持在±2°内,较大地增强了飞行器的抗扰能力。结果表明:采用本文的方法可以有效地估计各个旋翼的升力因子,从而提高Hex-Rotor飞行器的控制精度和效果。  相似文献   

10.
针对四旋翼无人机在轨迹跟踪过程中会受到内外部扰动、模型误差等不确定性因素的影响,本文提出了一种基于改进型扩展状态观测器的积分滑模控制方案。具体来讲,首先,将四旋翼无人机系统存在的模型误差以及内外部扰动等不确定性因素视作集总干扰,通过借鉴的改进扩展状态观测器对其进行观测;进而,在此基础上,进一步考虑四旋翼无人机系统控制的连续性,基于四旋翼无人机轨迹误差、速度误差、姿态角误差和姿态角速度误差设计积分滑模控制器,分析了系统的稳定性并分别进行了数值仿真和实机实验。结果表明,采用本文算法时,在数值仿真中,各状态跟踪误差不超过1%,跟踪精度最高;在实机实验中,位置跟踪误差总体上能控制在20%以下。因此,本文方法具备有效性和可行性。  相似文献   

11.
自适应反演神经网络控制在并联机器人中的应用   总被引:1,自引:0,他引:1  
针对未知非线性、外界干扰等各种不确定因素对二自由度冗余并联机器人控制系统的影响,提出了反演自适应神经网络控制方法.RBF神经网络实现了不确定性函数的逼近,自适应反演控制作为主控制器完成并联机器人控制系统的输出.仿真结果表明,自适应反演神经网络控制方法跟踪性能好,系统误差小,具有很强的鲁棒性,能够满足并联机器人的控制要求.仿真实验证实了该控制策略的正确性和有效性.  相似文献   

12.
王慧  于慧 《机电工程》2022,39(5):641-647
针对车辆驱动桥加载实验台存在的不匹配耦合干扰等问题,提出了一种基于自适应反推滑模控制(ABSMC)算法的控制器。首先,根据系统原理和传递函数,分别列出了含有不确定性的转速控制系统和转矩控制系统的状态空间方程;然后,利用基于李雅普诺夫的反推法和滑膜变结构控制法,进行了系统控制率的设计,并采用自适应控制策略对系统的耦合干扰进行了估计;最后,利用仿真的方式对控制器的有效性进行了验证。研究结果表明:采用自适应反推滑模控制时,转速和转矩控制系统的正弦跟踪性能明显优于自适应控制,系统跟踪精度高、稳态误差小;分别添加耦合干扰时,系统具有自适应性;在强烈干扰情况下,转速系统的最大跟踪误差为0.05 r/min,转矩系统的最大跟踪误差为0.09 N·m。  相似文献   

13.
针对水下机械臂动力学模型不确定和未知外界干扰问题,采用基于HJI理论的径向基函数神经网络自适应控制算法对水下机械臂进行控制。首先,以水下六自由度机械臂为例,基于D-H法则对水下机械臂的运动学进行分析,通过仿真验证该方法的正确性;接着,基于蒙特卡洛法构建水下六自由度机械臂的运动空间云图,真实反映水下机械臂的运动空间;然后,以二自由度水下机械臂为例,设计基于HJI理论的RBF神经网络自适应控制器,利用神经网络的万能逼近原理逼近不确定干扰项,考虑到神经网络逼近存在误差,将逼近误差看作外界干扰项并通过HJI理论对逼近误差在线评价,评价系统对干扰项的抑制能力,并采用自适应算法在线估计网络权值,加快系统收敛;最后,通过仿真可知,该机械臂能较好地完成轨迹跟踪。  相似文献   

14.
为了满足蛇形机器人轨迹跟踪运动的精度需要,消除外界干扰对机器人跟踪误差的影响,提出了一种蛇形机器人跟踪 误差预测的自适应轨迹跟踪控制器。 所提出的控制器实现了机器人干扰变量、摩擦系数和控制参数的预测,并用预测值和虚拟 控制函数来补偿系统的控制输入,抵消了蛇形机器人在轨迹跟踪过程中的侧滑角,避免了干扰变量对机器人带来的负面影响, 提高了轨迹跟踪的误差稳定性与控制精度。 在建立蛇形机器人模型后,利用积分形式的侧滑角补偿项改进了视线法,并设计了 蛇形机器人的自适应轨迹跟踪控制器。 使机器人的位置误差在 10 s 内实现收敛,角度误差小于 0. 03 rad,预测值误差在 5 s 内 收敛。 通过仿真实验,验证了所提出的控制器的有效性和优越性。  相似文献   

15.
针对具有参数不确定性和外界干扰的移动机器人轨迹跟踪问题,提出一种运动学跟踪控制器和动力学跟踪控制器相结合的控制方法。基于反演方法,应用自适应控制技术设计速度控制率的同时,对运动学模型中的未知参数进行了估计。在此基础上,引入动力学回归矩阵和单层神经网络以使机器人实际速度接近理论速度,并减弱系统参数不确定和外界干扰对于跟踪控制效果的影响。设计过程中,根据Lyapunov稳定性定律和Barbalat引理对控制系统的稳定性和收敛性进行了分析。对于典型曲线的仿真结果表明了所提出控制方法的有效性。  相似文献   

16.
讨论了存在外界干扰情况下漂浮基柔性空间机械臂的轨迹跟踪和振动抑制问题。结合系统动量守恒关系和拉格朗日方法建立了系统动力学模型。采用奇异摄动法的双时标分解方法,将系统分解描述为关节轨迹跟踪的慢变子系统与描述柔性杆件振动的快变子系统。针对慢变子系统,设计了自适应模糊H_∞控制算法,用模糊逻辑系统去逼近系统的不确定项;同时,设计了H_∞鲁棒控制项,用它克服模糊逼近误差和外界干扰对输出跟踪误差的影响。针对快变子系统,采用线性二次最优控制方法主动抑制,以保证系统的稳定性。基于Lyapunov稳定性理论证明了该算法可确保控制系统是渐近稳定的。系统仿真结果说明了控制器的可靠性和有效性,所设计的控制方案使得系统的跟踪误差及柔性振动快速收敛。  相似文献   

17.
针对可重构机械臂系统存在的不确定性及不同构型下的轨迹跟踪问题,提出了径向基函数(Radial Basis Function,RBF)神经网络鲁棒自适应补偿控制算法。设计了RBF神经网络补偿控制器自适应逼近补偿系统存在的未知项;为减小控制器逼近误差及适应构型变化时的鲁棒性,在控制律中引入了鲁棒项;基于李雅普诺夫(Lyapunov)稳定性理论设计了构型自适应调节律和鲁棒项并证明了闭环控制系统的稳定性。最后,以两种典型的可重构机械臂构型进行研究,结果表明所提算法能够适应系统构型的改变,同时有效地补偿系统存在的不确定性。  相似文献   

18.
针对刚性航天器在姿态跟踪控制中存在的系统不确定及外界干扰等问题,提出了一种预定义时间滑模控制器(PTSMC).首先,给出了以四元数为姿态参数的航天器姿态跟踪控制系统,利用误差四元数和误差角速度设计了预定义时间滑模面.然后,考虑了航天器系统的不确定性和外界干扰设计了一种非保守上界的PTSMC,并通过边界层技术降低了系统抖动.最后,通过设计Lyapunov函数,证明了所提出的控制器的预定义时间稳定性和系统收敛时间上界的非保守性.仿真结果表明,刚性航天器的姿态跟踪误差精度可达1.5×10-6 rad,角速度跟踪误差精度可达2×10-6 rad/s.与现有的预定义时间控制器相比,所提出的控制器的稳定时间上限是更加非保守的,与传统PD控制和非奇异终端滑模控制相比,所提出的控制器具有更高的跟踪精度和鲁棒性.通过3自由度气浮平台的姿态跟踪实验进一步说明了控制方案的有效性,其中角度跟踪误差小于0.1 rad,位置跟踪误差小于0.2 m.  相似文献   

19.
针对自由漂浮空间机械臂所存在的模型误差和机械传动机构中的齿隙死区问题,提出基于神经网络的自适应补偿控制方法。对于系统的模型误差,利用神经网络的逼近能力来对不确定部分进行自适应补偿,而设计变结构控制器消除逼近误差。对于关节执行机构中的齿隙死区,利用两个神经网络来分别进行死区模型的估计与补偿,利用死区补偿原理来推导死区输出、死区补偿器及控制器三者之间的数学关系,进而设计基于神经网络的控制器、补偿器及死区估计器的自适应在线学习律。基于Lyapunov理论证明了控制系统的稳定性。仿真结果验证了控制器的有效性。  相似文献   

20.
针对6-DOF并联机器人液压伺服系统存在参数摄动和外界不确定性因素干扰的问题,提出了一种基于动态模糊神经网络的鲁棒复合控制策略。在充分分析了液压伺服系统的基础上,对控制系统进行了PD控制器、鲁棒内回路控制器、零相位误差跟踪控制器以及动态模糊神经网络控制器的设计。然后基于MATLAB软件进行了控制系统的运动性能仿真实验分析。结果表明,鲁棒复合控制器的应用在很大程度上了消除了负载交联耦合干扰对系统的影响,而且提高了系统的鲁棒稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号