首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Twelve rhesus monkeys were vaccinated with SIVmac316 delta nef (lacking nef sequences), and 12 were vaccinated with SIVmac239 delta3 (lacking nef, vpr, and upstream sequences in U3). SIVmac316 and SIVmac239 differ by only eight amino acids in the envelope; these changes render SIVmac316 highly competent for replication in macrophages. Seventeen of the animals developed persistent infections with the vaccine viruses. Seven of the 24 vaccinated animals, however, developed infections that were apparently transient in nature. Six of these seven yielded virus from peripheral blood when tested at weeks 2 and/or 3, three of the seven had transient antibody responses, but none of the seven had persisting antibody responses. The 24 monkeys were challenged in groups of four with 10 rhesus monkey infectious doses of wild-type, pathogenic SIVmac251 at weeks 8, 20, and 79 following receipt of vaccine. None of the seven with apparently transient infections with vaccine virus were protected upon subsequent challenge. Analysis of cell-associated viral loads, CD4+ cell counts, and viral gene sequences present in peripheral blood in the remainder of the monkeys following challenge allowed a number of conclusions. (i) There was a trend toward increased protection with length of time of vaccination. (ii) Solid vaccine protection was achieved by 79 weeks with the highly attenuated SIV239 delta3. (iii) Solid long-term protection was achieved in at least two animals in the absence of complete sterilizing immunity. (iv) Genetic backbone appeared to influence protective capacity; animals vaccinated with SIV239 delta3 were better protected than animals receiving SIV316 delta nef. This better protection correlated with increased levels of the replicating vaccine strain. (v) The titer of virus-neutralizing activity in serum on the day of challenge correlated with protection when measured against a primary stock of SIVmac251 but not when measured against a laboratory-passaged stock. The level of binding antibodies to whole virus by enzyme-linked immunosorbent assay also correlated with protection.  相似文献   

7.
8.
9.
10.
11.
The nef reading frame overlaps about 70% of the U3 region of the 3' long terminal repeat (LTR) in primate lentiviruses. We investigated the functional role of these overlapping U3 sequences by analyzing the properties of three mutant forms of the pathogenic SIVmac239 clone. In mutant UScon, 90 of 275 bp in the upstream sequences (US) of U3 were changed in a conservative fashion without changing the predicted nef coding sequence. In mutant USnon, 101 of 275 bp in this region were changed in a nonconservative fashion, again without changing the predicted nef coding sequence. In mutant delta US, 275 bp in this region were deleted. Full-size, immunoreactive nef protein was synthesized in cells infected with the UScon and USnon mutants. The USnon and delta US mutants replicated with similar kinetics and to similar extents as wild-type, parental SIVmac239 in primary rhesus monkey peripheral blood mononuclear cell (PBMC) cultures. The UScon mutant replicated with slightly delayed kinetics in rhesus monkey PBMC cultures. In the CEMx174 cell line, the delta US mutant replicated similarly to the wild type, but the UScon and USnon mutants replicated with significantly delayed kinetics. Analysis of LTR-driven chloramphenicol acetyltransferase (CAT) activity and the effects of 5-azacytidine on virus replication suggested that the growth defect of the point mutants in CEMx174 cells was due in whole or in part to the introduction of multiple CG methylation sites in proviral DNA. Rhesus monkeys were experimentally infected with the UScon and USnon mutants, and the characteristics of the infection were compared with those of the parental SIVmac239. Analysis of the levels of plasma antigenemia, virus load, and CD4+ cells in PBMC revealed no decreased virulence of the mutant viruses. Analysis of lymph node biopsies taken from animals that received mutant viruses revealed histologic changes and levels of virus expression indistinguishable from those of the wild type. Furthermore, the wild-type behavior of the mutant viruses in rhesus monkeys occurred without any specific reversional events through at least 20 weeks of infection. These results, and the recent results of Kirchhoff et al. (F. Kirchoff, H. W. Kestler III, and R. C. Desrosiers, J. Virol. 68:2031-2037, 1994), suggest that these upstream sequences in U3 are primarily or exclusively nef coding sequence.  相似文献   

12.
13.
14.
15.
16.
We describe the structural and functional features of the human alpha3 nicotinic receptor subunit promoter. A 0.35-kb region immediately upstream of the start codon was identified that when transfected in human neuroblastoma cells was able to drive the expression of the luciferase reporter gene with a strength comparable to that of the well-characterized simian virus 40 promoter/enhancer. This region displayed the features of a multistart-site, GC-rich, TATA-less, and CAAT-less promoter, containing many overlapping Sp1 and AP-2 putative binding sites. Further dissections of the 0.35-kb fragment revealed that its 3' region, specifying the 5' UT of the mRNA, plays a relevant positive effect in determining the strength of the promoter. This region contains putative cis-acting elements for AP-2, nuclear factor-kappaB, and the recently described multiple-start site element downstream-1. By mutation analysis, we showed that these sites are functional and when combined increase the promoter activity by 4-fold. The 0.35-kb promoter was found to be under the negative control of upstream sequences that include a modern Alu repeat. The alpha3 Alu repeat works as a composite region, containing both positive and negative elements that control the activity of the downstream promoter. Finally, we investigated the tissue-specific activity of the human alpha3 gene 5' regulatory sequences, showing that they are able to drive the expression of the reporter gene preferentially in neuronal cells.  相似文献   

17.
18.
Sequence conservation among mammalian poly(A) sites is limited to the sequence AAUAAA, coupled with an amorphous downstream U- or GU-rich region. Since these sequences may also occur within the coding region of mRNAs, additional information must be required to define authentic poly(A) sites. Several poly(A) sites have been shown to contain sequences outside the core elements that enhance the efficiency of 3' processing in vivo and in vitro. The human immunodeficiency virus type 1, equine infectious anemia virus, and adenovirus L1 3' processing enhancers have been shown to promote the binding of cleavage and polyadenylation specificity factor (CPSF), the factor responsible for recognition of AAUAAA, to the pre-mRNA, thereby facilitating the assembly of a stable 3' processing complex. We have used in vitro selection to examine the mechanism by which the human immunodeficiency virus type 1 3' processing enhancer promotes the interaction of CPSF with the AAUAAA hexamer. Surprisingly, RNAs selected for efficient polyadenylation were related by structure rather than sequence. Therefore, in the absence of extensive sequence conservation, our results strongly suggest that RNA structure is a critical determinant of poly(A) site recognition by CPSF and may play a key role in poly(A) site definition.  相似文献   

19.
20.
The viral replication factors E1 and E2 of papillomaviruses are necessary and sufficient to replicate plasmids containing the minimal origin of DNA replication in transient assays. Under physiological conditions, the upstream regulatory region (URR) governs expression of the early viral genes. To determine the effect of URR elements on E1 and E2 expression specifically, and on the regulation of DNA replication during the various phases of the viral life cycle, we carried out a systematic replication study with entire genomes of human papillomavirus type 31 (HPV31), a high-risk oncogenic type. We constructed a series of URR deletions, spacer replacements, and point mutations to analyze the role of the keratinocyte enhancer (KE) element, the auxiliary enhancer (AE) domain, and the L1-proximal end of the URR (5'-URR domain) in DNA replication during establishment, maintenance, and vegetative viral DNA amplification. Using transient and stable replication assays, we demonstrate that the KE and AE are necessary for efficient E1 and E2 gene expression and that the KE can also directly modulate viral replication. KE-mediated activation of replication is dependent on the position and orientation of the element. Mutation of either one of the four Ap1 sites, the single Sp1 site, or the binding site for the uncharacterized footprint factor 1 reduced replication efficiency through decreased expression of E1 and E2. Furthermore, the 5'-URR domain and the Oct1 DNA binding site are dispensable for viral replication, since such HPV31 mutants are able to replicate efficiently in a transient assay, maintain a stable copy number over several cell generations, and amplify viral DNA under vegetative conditions. Interestingly, deletion of the 5'-URR domain leads to increased transient and stable replication levels. These findings suggest that elements in the HPV31 URR outside the minimal origin modulate viral replication through both direct and indirect mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号