首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 120 毫秒
1.
本文探讨了轻烧镁砂(MgO)在不同水泥浆体中的膨胀特性,并借助于水化热仪、DTA、DSC、XRD、OM和EM对MgO在不同碱度NaOH溶液和水泥浆体中的水化及其产物Mg(OH)_2的结晶特性进行了较为详细的研究。在此基础上,提出了MgO在水泥中的膨胀机理,并据此建立了膨胀模型。研究结果表明,水泥中MgO的膨胀起因于Mg(OH)_2晶体的生成和长大。膨胀在很大程度上取决于生成的Mg(OH)_2晶体所占据的位置,其次还取决于Mg(OH)_2晶体的尺寸。浆体膨胀的直接推动力为极细小Mg(OH)_2晶体的吸水肿胀力和Mg(OH)_2晶体的结晶生长压力,但后者是主要的。粉煤灰和矿渣使浆体孔隙液碱度降低和浆体多孔是其对膨胀起抑制作用的主要原因。  相似文献   

2.
张世华 《硅酸盐通报》2018,37(1):134-138
研究了掺轻烧MgO膨胀剂的水泥浆体在不同养护条件下的变形性能,并采用X射线衍射仪、同步热分析以及背散射扫描电镜分析了掺MgO膨胀剂的水泥浆体中MgO的水化性能.结果表明:水泥浆体在不同的养护条件下养护,其相对湿度越大,收缩越小.在相同养护湿度条件下,水中预养护时间越长,其收缩越小.掺入MgO膨胀剂可以有效地降低低湿度条件下水泥浆体的收缩,其主要原因是轻烧MgO膨胀剂在缺水养护的低湿度条件下也能进行水化反应生成Mg(OH)2,从而降低了水泥浆体的收缩.  相似文献   

3.
Corrosion of aluminium metal in ordinary Portland cement (OPC) based pastes produces hydrogen gas and expansive reaction products causing problems for the encapsulation of aluminium containing nuclear wastes. Although corrosion of aluminium in cements has been long known, the extent of aluminium corrosion in the cement matrices and effects of such reaction on the cement phases are not well established. The present study investigates the corrosion reaction of aluminium in OPC, OPC-blast furnace slag (BFS) and calcium aluminate cement (CAC) based systems. The total amount of aluminium able to corrode in an OPC and 4:1 BFS:OPC system was determined, and the correlation between the amount of calcium hydroxide in the system and the reaction of aluminium obtained. It was also shown that a CAC-based system could offer a potential matrix to incorporate aluminium metal with a further reduction of pH by introduction of phosphate, producing a calcium phosphate cement.  相似文献   

4.
Magnesium silicate hydrate (M-S-H) gel is formed by the reaction of brucite with amorphous silica during sulphate attack in concrete and M-S-H is therefore regarded as having limited cementing properties. The aim of this work was to form M-S-H pastes, characterise the hydration reactions and assess the resulting properties. It is shown that M-S-H pastes can be prepared by reacting magnesium oxide (MgO) and silica fume (SF) at low water to solid ratio using sodium hexametaphosphate (NaHMP) as a dispersant. Characterisation of the hydration reactions by x-ray diffraction and thermogravimetric analysis shows that brucite and M-S-H gel are formed and that for samples containing 60 wt.% SF and 40 wt.% MgO all of the brucites react with SF to form M-S-H gel. These M-S-H cement pastes were found to have compressive strengths in excess of 70 MPa.  相似文献   

5.
The phase formation, heat of hydration and dilatation in a blended cement consisting of 50 wt.% calcium aluminate cement, 25 wt.% Portland cement and 25 wt.% calcium sulfate were studied (w/c=1). The calcium sulfate was β-hemihydrate, anhydrite and mixes of the two. Kinetic expressions describing the ettringite formation in the pastes with the pure calcium sulfates were found. Hydration reactions were suggested and the phase development was compared to the hydration heat by mass and heat balances. When the calcium sulfate was 75 and 50 wt.% β-hemihydrate, the systems behaved as a linear combination of the 100 and 0 wt.% blends. At 25 wt.%, the hydration kinetics differed from the other blends. With only β-hemihydrate, the last 50% of ettringite formation was accompanied by expansion, mainly caused by interaction of crystals growing radially on cement grains. In the paste with only anhydrite, ettringite crystals grew in solution and produced no expansion.  相似文献   

6.
主要研究了稻草纤维碱处理液对碱式硫酸镁水泥凝结时间、流动度和强度的影响,同时利用XRD对水泥水化产物的物相组成进行了分析.研究结果显示,稻草纤维中的萃取物对水泥浆体有缓凝作用,并使得水泥浆体的流动度降低,早期强度也较低.由于纤维萃取物阻止了水泥浆体中MgO水解生成[Mg(OH)(H2O)x]+,抑制了早期水化产物中5Mg(OH)2· MgSO4· 7H2O(5· 1· 7)相的形成,因而早期强度发展缓慢.与溶剂为水的碱式硫酸镁水泥相比,碱处理过程中NaOH溶液加速了水泥的正常凝结,降低了水泥浆体的流动性,并对强度的发展有抑制作用.NaOH与MgSO4反应生成Mg(OH)2,使得水泥浆体中Mg2+减少,Mg(OH)2含量增加,导致水泥强度有所降低.  相似文献   

7.
Magnesium oxide (MgO) presents excellent refractoriness and high resistance to basic slag. However, in the presence of water, MgO undergoes an expansive hydration reaction generating Mg(OH)2, which can lead to swelling and cracking. In this work, additives called chelants were added to dead burnt magnesia suspensions in order to check their effectiveness as inhibitors of the magnesium oxide hydration. Zeta potential, ionic conductivity, pH and temperature measurements were used to provide information related to the magnesia surface and the chelant adsorption. Assessment of the hydration degree and volumetric expansion provided indications of the amount of Mg(OH)2 formed, as well as its likelihood to damage the ceramic bodies. The results showed that citric acid can inhibit hydration to some extent, whereas ethylenediamine tetraacetic acid (EDTA) was more effective in preventing volume expansion. An addition of 0.3 wt% of these chelants was sufficient to prevent hydration and avoid expansion.  相似文献   

8.
The hydration processes in the ternary system fly ash/calcium aluminate cement/calcium sulphate (FA/CAC/C$) at 20 °C were investigated; six compositions from the ternary system FA/CAC/C$ were selected for this study. The nature of the reaction products in these pastes were analysed by X-ray diffraction (XRD) and infrared spectroscopy (FTIR). At four days reaction time, the main hydration reaction product in these pastes was ettringite and the samples with major initial CAC presented minor ettringite but calcium aluminates hydrates. The amount of ettringite developed in the systems has no direct relation with the initial components.  相似文献   

9.
游离氧化钙对水泥浆体体积膨胀的影响机制   总被引:3,自引:0,他引:3  
硬化水泥桨体由于水泥中游高氧化钙水化会导致体积膨胀。研究发现,浆体的体积膨胀除与fCaO的含量和活性有关外,还与浆体的结构和性能密切fCaO水化形成Ca(OH)2时,不仅固相体积增加,而且空隙体积亦增加,而且空隙体积亦增加。fCaO在浆体硬化结构形成之后水化,且其水化产物成堆聚集时才会导致浆体体积膨胀。  相似文献   

10.
为了研究活性MgO含量对碱式硫酸镁水泥强度及水化产物的影响,采用不同活性MgO含量的轻烧氧化镁制备水泥试样,进行抗压强度和抗折强度试验,并对水泥水化产物进行X射线衍射分析.结果表明,当改性剂掺量为活性MgO质量的1%时,活性MgO含量为60%的轻烧氧化镁制备的水泥试样在室温条件下养护28 d的抗压强度最高,水化产物的主要物相为5·1·7相和少量Mg(OH)2相;活性MgO含量为70%的轻烧氧化镁配制的水泥试样在同等条件下的抗压强度仅为活性MgO含量为60%时的60%,水化产物的主要物相为Mg(OH)2相和少量5·1·7相;活性MgO含量为43.2%的轻烧氧化镁制备的水泥试样强度最低,水化产物中以Mg(OH)2相为主,5·1·7相含量较少,以及剩余MgO相和未分解的MgCO3相.采用活性MgO含量为70%的轻烧氧化镁制备水泥试样时,增加改性剂掺量为活性MgO质量的2%时,试样各龄期强度有较大提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号