首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we used a UV radiation grafting method to modify the surface of the biomaterial polycarbonateurethane (PCU). Hydrophilic poly(ethylene glycol) monoacrylate (PEGMA; number‐average molecular weight = 526) as a macromolecular monomer was grafted onto the PCU surface by UV photopolymerization. The Fourier transform infrared and X‐ray photoelectron spectroscopy results of the graft‐modified PCU confirmed poly[poly(ethylene glycol) monoacrylate] block grafting onto the surface. We investigated the effects of the reaction temperature, macromolecular monomer concentration, UV irradiation time, and photoinitiator concentration on the grafting density (GD) in detail. Furthermore, we investigated the effects of GD under various process conditions on the water uptake and water contact angle. The modified materials had a high water uptake and low water contact angle, which indicated that the hydrophilicity of the PCU surface was improved significantly by the introduction of the hydrophilic poly(ethylene glycol) blocks on the surface. The anticoagulant properties of the material might also have been improved. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
A new approach, plasma-induced graft polymerization of poly(ethylene glycol) methacrylate (PEGMA), was used to introduce PEG graft chains with hydroxyl end groups onto a polyurethane (Tecoflex) surface. After argon plasma treatment and subsequent exposure to air, graft polymerization onto Tecoflex films was allowed to proceed in deaerated aqueous solutions of PEGMA at 60°C. The virgin, plasma-treated, and grafted films were characterized comparatively by means of attenuated total reflection infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, measurement of contact angle, and protein adsorption. The Tecoflex film undergoes etching during argon plasma treatment, surface oxidation when exposed to air after plasma treatment, and surface restructuring in response to environment upon storage in air. The plasma-induced graft polymerization of PEGMA proved to be successful in introducing PEG graft chains with reactive hydroxyl end groups onto the surface. Grafted films with different surface grafting density of PEG were prepared. Grafted films with higher PEG content exhibit higher hydrophilicity, smoother topography, and lower fibrinogen adsorption. The hydroxyl end groups built onto the surface offer further possibilities of improving its biocompatibility by immobilizing bioactive molecules. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Yali Li  K.G. Neoh  E.T. Kang 《Polymer》2004,45(26):8779-8789
A surface modification technique was developed for the covalent immobilization of poly(vinyl alcohol) (PVA) hydrogel onto poly(ethylene terephthalate) (PET) to improve the biocompatibility of the film. The PET film was first graft copolymerized with poly(ethylene glycol) monomethacrylate (PEGMA) in the presence of ethylene glycol dimethacrylate (EGDMA) as crosslinker, and then oxidized with a mixture of acetic anhydride (Ac2O) and dimethyl sulfoxide (DMSO) to produce aldehyde groups on the PET surface. Finally, the prepared PVA solution was cast onto the film and covalently immobilized on the film through the reaction between the aldehyde groups on the PET film and the hydroxyl groups of PVA. The good attachment of the PVA layer to the PET film was confirmed by observing the cross-section of the PET-PVA film using scanning electron microscopy (SEM). Heparin was immobilized on the PVA layered PET using two different methods, physical entrapment and covalent bonding, to further improve the biocompatibility of the film. Attenuated total reflectance (ATR) FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize the chemical composition of the surface modified films. The biocompatibility of the various surface modified PET films was evaluated using plasma recalcification time (PRT) and platelet adhesion.  相似文献   

4.
Natural rubber (NR) latex films surface‐grafted with hydrophilic monomers, poly(ethylene glycol) methacrylate (PEGMA), N‐vinylpyrrolidone (VPy), and 2‐methacryloyloxyethyl phosphorylcholine (MPC), were prepared by UV‐induced graft polymerization using benzophenone as a photosensitizer. The grafting yield increases of vulcanized NR latex films as a function of time and monomer concentration were of lesser magnitude than those of the unvulcanized NR latex films. This can be explained as a result of the crosslinked network generated during vulcanization acting as a barrier to the permeation of the photosensitizer and the monomer. The appearance of a characteristic carbonyl stretching in the attenuated total reflectance‐Fourier transform infrared spectroscopy (ATR‐FTIR) spectra of NR latex films after the surface grafting of PEGMA and MPC indicates that the modification has proceeded at least to the sampling depth of ATR‐FTIR (∼ 1–2 μm). According to the water contact angle of the modified NR latex films, the surface grafting density became higher as the grafting time and monomer concentration increased. The complete absence of plasma protein adsorption and platelet adhesion on the surface‐modified NR latex films having grafting yield above 1 wt % is a strong indication of improved blood compatibility. Results from tensile tests suggest that graft polymerization does not cause adverse effects on the mechanical properties of vulcanized NR latex films. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Polyethylene glycol (PEG) and poly(PEGMA) conjugated nanodiamond (ND) have been synthesized via “grafting to” and “grafting from” methods, respectively. In “grafting to” method, hydroxyl groups on ND surface were firstly oxidized to carboxyl groups, and then reacted with thionyl chloride to form acyl chloride groups. The acyl chloride functionalized ND (ND–COCl) was subsequently reacted with poly(ethylene glycol) monomethyl ether (mPEG) in the presence of triethylamine to generate mPEG conjugated ND (ND–mPEG). On the other hand, in “grafting from” method, ND–OH was modified with 2-bromoisobutyryl bromide (ND–Br), and then poly(PEG methyl ether methacrylate) (Poly(PEGMA)) chains were linked on the ND surface through surface-initiated atom transfer radical polymerization (ATRP) using ND–Br as the initiator and Cu(Br)/N,N,N′,N″,N″-pentmethyl diethylenetriamine (PMDETA) as the catalyst and ligand. The polymer conjugated ND particles were characterized using transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). TGA analyses demonstrated that the polymer weight ratios through “grafting to” and “grafting from” methods were 29.8% and 34.4%, respectively. The mPEG and poly(PEGMA) conjugated ND nanoparticles exhibited enhanced dispersibility in organic media. More importantly, due to the relative high graft ratios and molecular weight, poly(PEGMA) functionalized ND was also dispersed well in water. Given the excellent physicochemical and biological properties of PEG and ND, the methods described in current work might be useful for the preparation of functional ND nanoparticles for potential biomedical applications.  相似文献   

6.
The gradient surface shows enormous potential in the development of tissue engineering, biosensor, microfluidic control, and particle sorting. In this work, a poly(polyethyleneglycol methacrylate) (poly(PEGMA)) gradient surface was prepared through surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-AGRET ATRP). The effect of various parameters on the thickness growth of poly(PEGMA) film were analyzed, among which the excessive reducing agent was utmost important. The reducing agents supported the regeneration of CuI and eliminated the disturbance of air, maintaining the "living polymerization" of poly(PEGMA) up to 73.1 nm under tested conditions. The physicochemical properties of the fabricated surfaces were characterized by ellipsometry, X-ray photoelectron spectroscopy, water contact angle. The thickness slope of gradient poly(PEGMA) was controllable in a nanoscale range. The gradient surface was further grafted with CRGD (Cys-Arg-Gly-Asp) peptides onto the poly(PEGMA-co-[glycidyl methacrylate]) blocks via the ring-opening reaction between epoxy and amino groups, which showed a gradient change in water contact angle and adhesion of endothelial cells.  相似文献   

7.
To improve the hemocompatibility and biocompatibility of polyurethanes (PUs), PU surface was firstly modified by poly(ethylene glycol) PEG through acryloyl chloride and subsequently grafted on carboxymethyl‐chitosan (CMCS). Attenuated total reflection Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy analysis confirmed that carboxyl‐chitosan was grafted onto PUs surface. The surface properties of unmodified and modified PU films were determined and compared by water contact angle assessment. After PEG and CMCS grafting, the surface energy of the PU film was increased. Furthermore, the hemocompatibility of the modified PU films was systematically evaluated by bovine serum albumin (BSA) adsorption, the dynamic blood clotting test, the platelet adhesion test, and the hemolytic test. It appears that BSA adsorption and platelet adhesion were significantly curtailed for the modified PU films. Therefore, the obtained results showed the modified PU film has better hemocompatibility. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Herein, we grafted the zwitterionic polynorbornene onto polycarbonate urethane (PCU) film surface by a convenient route of thiol‐ene click‐chemistry. The PCU film surface was first treated with hexamethylene‐1,6‐diisocynate and subsequently with two different thiol agents (l ‐cysteine and β‐marcaptoethanol) in the presence of di‐n‐butyltin dilaurate (DBTDL) to immobilize sulfhydryl groups onto the surface. Here, DBTDL acted as selective catalyst for the reaction between surface‐tethered isocyanates and amine/hydroxyl groups in thiol agents over that of free thiol groups. In the next step, zwitterionic polynorbornene (poly(NSulfoZI)) having functionalizable double bonds was grafted onto these surfaces by photo‐initiated thiol‐ene click‐reaction. The modified surfaces were characterized by water contact angle and XPS analysis. Moreover, the cytocompatibility of these surfaces was investigated by model endothelial cells, EA.hy926, for 1, 3, and 7 d culture times, which showed enhanced cell adhesion and growth. Therefore, the poly(NSulfoZI) functionalized PCU surface using l‐cysteine as thiol agent could be a good candidate for tissue engineering material application.  相似文献   

9.
A series of novel waterborne hyperbranched polyurethane acrylate (WHPUA)/layered double hydroxide (LDH) nanocomposites based on hyperbranched aliphatic polyester Boltorn H20 (H20) and MgAl-LDH were successfully synthesized by in situ polymerization approach. The MgAl-LDH was firstly modified by sodium dodecyl sulfate (SDS) through the coprecipitation method, and then grafted by isophorone diisocyanate (IPDI), forming a complex with NCO groups at the surface and interlayer of LDH (LDH-DS-NCO). The residual hydroxyl groups after modification with succinic anhydride were crosslinked by the semi-adduct of IPDI reacted with HEA, and LDH-DS-NCO, followed by a neutralization reaction with triethylamine. The resulting water dispersible hyperbranched polyurethane acrylate WHPUA/LDH hybrid oligomer was then exposed to a medium pressure mercury lamp, forming a partially exfoliated WHPUA/LDH nanocomposite in the presence of a fragmental photoinitiator. The chemical structure, crystal configuration, morphology of WHPUA/LDH nanocomposite were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and high resolution transmission electron microscopy. The experimental results indicated that both the intercalated and exfoliated structures were formed in the UV cured polymer/LDH nanocomposite. The TGA results showed that the thermal stability was improved. Moreover, the pencil hardness was greatly increased, and the flexibility remained at an acceptable level for the UV cured polymer/LDH nanocomposites.  相似文献   

10.
To reduce the surface protein adsorption of polysulfone (PSf) film, we improved the hydrophilicity of this film by photochemical grafting of methoxypoly (ethylene glycol) (MPEG) derivatives on its surface. Grafting was achieved with both the simultaneous method and the sequential method. Surface analysis of the grafted film by X‐ray photoelectron spectroscopy (XPS) revealed that the PEG chains had successfully grafted onto the surface of the film. The grafting efficiencies by simultaneous and sequential methods were 20.8% and 10.2%, respectively. With an atomic force microscope (AFM), the surface topography of PEG‐grafted films by these two methods was compared. Static water contact angle measurement indicated that the surface hydrophilicity of the film had been improved. Protein adsorption measurement showed that the surface protein adsorption of the modified film was significantly reduced compared with that of the unmodified PSf film. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3818–3826, 2007  相似文献   

11.
Polyethylene‐b‐poly (ethylene glycol) (PE‐b‐PEG) was successfully synthesized by a coupling reaction of hydroxyl‐terminated polyethylene (PE‐OH) and isocyanate‐terminated poly (ethylene glycol) (PEG‐NCO). PE‐OH was prepared by coordination chain transfer polymerization (CCTP) using 2,6‐bis[1‐(2,6‐diisopropylphenyl)imino ethyl] pyridine iron (II) dichloride /dry ethylaluminoxane (DEAO) /diethyl zinc (ZnEt2) as catalyst and subsequent in situ oxidation with oxygen. The active centers of this catalyst system were counted, indicating that the active centers were more stable using DEAO as cocatalyst than using dry methylaluminoxane (DMAO) as cocatalyst. PEG‐NCO was synthesized through the condensation reaction of monomethylpoly(ethylene glycol) (PEG) with isophoronediisocyanate (IPDI). Subsequently, the thermal characterization, morphological characterization and the application of these diblock copolymers was investigated. The results indicated that the diblock copolymers were effective compatilizers for polyethylene/poly(ethylene glycol) blends. Meanwhile, they were excellent surface modification agents for polyethylene membrane and glass sheet, it can efficiently turn a hydrophobic surface into a hydrophilic surface, or vice versa. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42236.  相似文献   

12.
Hydrogels containing carbon nanotubes (CNTs) are expected to be promising conjugates because they might show a synergic combination of properties from both materials. Most of the hybrid materials containing CNTs only entrap them physically, and the covalent attachment has not been properly addressed yet. In this study, single‐walled carbon nanotubes (SWNTs) were successfully incorporated into a poly(ethylene glycol) (PEG) hydrogel by covalent bonds to form a hybrid material. For this purpose, SWNTs were functionalized with poly(ethylene glycol) methacrylate (PEGMA) to obtain water‐soluble pegylated SWNTs (SWNT–PEGMA). These functionalized SWNTs were covalently bonded through their PEG moieties to a PEG hydrogel. The hybrid network was obtained from the crosslinking reaction of poly(ethylene glycol) diacrylate prepolymer and the SWNT–PEGMA by dual photo‐UV and thermal initiations. The mechanical and swelling properties of the new hybrid material were studied. In addition, the material and lixiviates were analyzed to elucidate any kind of SWNT release and to evaluate a possible in vitro cytotoxic effect. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Chun Zhang  Douglas E. Hirt 《Polymer》2005,46(22):9257-9264
Dansyl cadaverine and polyethylene glycol (PEG) derivatives were grafted on the surface of EAA film and in its subsurface region through formation of amides and esters, respectively. A two-step reaction was conducted. First, EAA film was activated with PCl5 at room temperature. Second, the acid chloride was reacted with dansyl cadaverine or a PEG derivative to form a modified film. ATR-FTIR spectroscopy and fluorometry were employed to analyze the modified films after each step. It was found that dichloromethane yielded the highest grafting efficiency, with the dansyl cadaverine penetrating throughout the ATR-FTIR analysis region (∼400 nm) in a few minutes. As the grafting depth increased with time, so did the amount of fluorescence intensity of grafted dansyl cadaverine. ATR-FTIR spectra for PEG grafting indicated that the acid chloride peak decreased with time, while the ester peak increased. However, hydrolysis occurred at later times, consuming the acid chloride groups within the film. A marked decrease of static water contact angle was observed for EAA grafted with PEG99 (PEG that contains 99 ethylene glycol repeat units), almost 40° lower than that of neat EAA (∼99°). For other PEG-grafted films, the surface hydrophilicity was also improved.  相似文献   

14.
Natural castor oil based 2-package waterborne polyurethane wood coatings   总被引:1,自引:0,他引:1  
The effects of four kinds of hardener on the properties of castor oil (CO) based 2-package waterborne polyurethane (2K-WPU) wood coatings were examined. Modified castor oil (MCO) was prepared by transesterification of glycerol and CO at the molar ratio of 2.0. The waterborne polyurethane-dispersed polyol (PUDp), one component of the 2K-WPU, was synthesized from MCO, dimethylol propionic acid (DMPA) and isophorone diisocyanate (IPDI) by the acetone process to provide a prepolymer with a carboxyl and hydroxyl groups. Then the prepolymer was neutralized by triethylamine (TEA) and dispersed into water. After vacuum distillation to remove acetone, the PUDp was obtained and then mixed with four different hardeners: IPDI, hexamethylene diisocyanate (HDI), polyethylene glycol (PEG) modified PIPDI (polymeric IPDI) and PEG-modified PHDI (polymeric HDI). The NCO/OH molar ratio of 1.5 was used and a 2K-WPU coating was obtained. The results showed that the film of the 2K-WPU coatings obtained from IPDI hardener had excellent gloss and hardness. On the contrary, the film containing PEG-modified PIPDI hardener (PEG-PIPDI) had lower hardness and gloss but higher tensile strength. The film containing PEG-modified PHDI hardener (PEG-PHDI) showed the best elongation at break, abrasion resistance and impact resistance, though it had the worst hardness. The film with HDI hardener had the best hardness and highest tensile strength and superior water resistance among all the films with different hardeners, and it was suitable for wood coatings.  相似文献   

15.
Abstract

In order to enhance the compatibility of TiO2 nanoparticles in poly(butyl acrylate) (PBA) matrix, surface modification of TiO2 was conducted using 3-methacryloxypropyl-trimethoxysilane (MPS). To improve the effect of surface modification, TiO2 was predispersed in ethanol via ultrasonic waves. The process was investigated in detail to obtain the optimum condition of ultrasonic dispersion. The dispersion of TiO2 in ethanol was evaluated via sedimentation rate. Fourier transform infrared spectroscopy and thermogravimetric analysis were performed to investigate the effect of surface modification. It was found that the organic functional groups of MPS had been successfully grafted onto the surface of TiO2 nanoparticles. Finally, both neat PBA film and TiO2/PBA composite film were prepared and characterised. The modified TiO2 presented good compatibility in PBA matrix.  相似文献   

16.
ABSTRACT: Silica nanoparticles have been functionalized by click chemistry and atom transfer radical polymerization (ATRP) simultaneously. First, the silanized silica nanoparticles were modified with bromine end group, and then the azide group was grafted onto the surface via covalent coupling. 3-Bromopropyl propiolate was synthesized, and then the synthesized materials were used to react with azide-modified silica nanoparticles via copper-mediated click chemistry and bromine surface-initiated ATRP. Transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis were performed to characterize the functionalized silica nanoparticles. We investigated the enrichment efficiency of bare silica and poly(ethylene glycol) methacrylate (PEGMA)-functionalized silica nanoparticles in Pb(II) aqueous solution. The results demonstrated that PEGMA-functionalized silica nanoparticles can enrich Pb(II) more quickly than pristine silica nanoparticles within 1 h.  相似文献   

17.
In this study, a series of shape‐memory polyurethanes were prepared from polycarbonate diol (PCDL) with a molecular weight of 2000, trimethylol propane, and isophorone diisocyanate (IPDI). The properties of crosslinked poly(carbonate urethane) (PCU) networks with various compositions were investigated. The chemical structures and thermal properties were determined with Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. FTIR analysis indicated that PCU had the structures of IPDI and PCDL and the amido formyl ester in polyurethanes. The gel content of PCU showed that PCU could be effectively formed as crosslinked polyurethane networks. The glass‐transition temperatures of the PCU networks increased slightly with decreasing soft‐segment content in the networks. The values of Young's modulus in the networks at 25°C increased with decreasing soft‐segment content, whereas the tensile stress and breaking elongation decreased significantly. PCU showed shape‐memory effects with a high strain fixity rate. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Poly(vinylamine) (PVAm) was grafted on a poly(ethylene) (PE) film surface via the surface graft polymerization of N‐vinylformamide (NVF) and N‐vinylacetamide (NVA) and the subsequent hydrolysis of those grafted polymers. The surface was characterized by X‐ray photoelectron spectroscopy (XPS), contact angle, moisture absorption, and the leakage of electrostatic charge from the films. PNVF and PNVA were introduced onto the surface of the PE film successfully, in spite of the fact that the initiator for polymerization was a peroxide group. The grafted amounts of PNVF and PNVA were dependent on the grafting time. A PVAm‐grafted surface was obtained via the hydrolysis of the grafted PNVF. The grafted‐PNVA was not hydrolyzed under mild hydrolysis. The obtained PVAm‐grafted surface appeared to be useful for various applications, such as protein immobilization or chemical modification. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1583–1587, 1999  相似文献   

19.
The use of isopropanol (IPA) as the reaction solvent for the preparation of high molecular weight segmented polyether-urea copolymers based on cycloaliphatic diisocyanates was investigated. Reactivity of IPA with bis(4-isocyanatohexyl)methane (HMDI) and isophorone diisocyanate (IPDI) was studied between 0 and 40 °C using in-situ FTIR spectroscopy. HMDI, which has secondary isocyanate groups, shows a very slow reaction with a large excess of IPA at 0 and 23 °C. Analysis of the kinetic data indicates an activation energy of 51 kJ/mol for the reaction between HMDI and IPA. As expected, IPDI, which has both a primary and a secondary isocyanate (NCO) group, reacts faster with IPA compared with HMDI, which only has secondary NCO groups. However, the rate of reaction of IPDI with IPA at 0 °C is extremely slow (approximately 1% consumption of isocyanate in 60 min) thus allowing the use of IPA as the reaction solvent for polyether-urea synthesis. Preparation of high molecular weight, high-strength HMDI and IPDI based polyether-urea segmented copolymers in IPA has been demonstrated. Thermal analysis and stress-strain analyses were used to characterize the products.  相似文献   

20.
Fu Liu  Bao-Ku Zhu  You-Yi Xu 《Polymer》2007,48(10):2910-2918
Poly(vinylidene fluoride) (PVDF) membrane was pre-irradiated by electron beam, and then poly(ethylene glycol) methyl ether methacrylate (PEGMA) was grafted onto the membrane surface in the aqueous solution. The degree of grafting was significantly influenced by the pH value of the reaction solution. The surface chemical changes were characterized by the Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). Combining with the analysis of the nuclear magnetic resonance proton and carbon spectra (1H NMR and 13C NMR), PEGMA was mainly grafted onto the membrane surface. Morphological changes were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The porosity and bulk mean pore size changes were determined by a mercury porosimeter. The surface and bulk hydrophilicity were evaluated on the basis of static water contact angle, dynamic water contact angle and the dynamic adsorption process. Furthermore, relative high permeation fluxes of pure water and protein solution were obtained. All these results demonstrate that both hydrophilicity and fouling resistance of the PVDF membrane can be improved by the immobilization of hydrophilic comb-like polymer brushes on the membrane surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号