首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a novel hardware architecture for the real-time high-throughput implementation of the adaptive deblocking filtering process specified by the H.264/AVC video coding standard. A parallel filtering order of six units is proposed according to the H.264/AVC standard. With a parallel filtering order (fully compliant with H.264/AVC) and a dedicated data arrangement in local memory banks, the proposed architecture can process filtering operations for one macroblock with less filtering cycles than previously proposed approaches. Whereas, filtering efficiency is improved due to a novel computation scheduling and a dedicated architecture composed of six filtering cores. It can be used either into the decoder or the encoder as a hardware accelerator for the processor or can be embedded into a full-hardware codec. This developed Intellectual Property block-based on the proposed architecture supports multiple and high definition processing flows in real time. While working at clock frequency of 150 MHz, synthesized under 65 nm low power and low voltage CMOS standard cell technology, it easily meets the throughput requirements for 4 k video at 30 fps of all the levels in H.264/AVC video coding standard and consumes 25.08 Kgates.  相似文献   

2.
H.264编码器中的帧内4×4预测部分具有严重的数据依赖性,它的硬件化设计很难采用流水线实现,从而导致关键路径很长,硬件利用率很低,成为H.264编码器设计中的一个瓶颈。针对这个问题,在不减少预测模式和不增加系统资源的前提下,提出了一种新的结构,它通过利用原始像素进行模式判决和利用重构像素进行帧内预测的方法,可以使帧内预测与重构循环完全流水线实现,基本上达到了100%的硬件利用率,而且没有明显的PSNR损失。所提出的硬件结构可在215个时钟周期内完成一个宏块的帧内4×4预测。用SMIC 0.13μm工艺库综合,结果显示该结构最高可运行在250 MHz,面积约为116千门,可支持4 096×2 160@30 f/s(帧/秒)视频序列的实时编码。  相似文献   

3.
H.264编码器中的帧内4x4预测部分具有严重的数据依赖性,它的硬件化设计很难采用流水线实现,从而导致关键路径很长,硬件利用率很低,成为H.264编码器设计中的一个瓶颈。针对这个问题, 在不减少预测模式和不增加系统资源的的前提下,本文提出了一种新的结构,它通过利用原始像素进行模式判决和利用重构像素进行帧内预测的方法,可以使帧内预测与重构循环完全流水线实现,基本上达到了100%的硬件利用率,而且没有明显的PSNR的损失。本文所提出的硬件结构可在215个时钟周期内完成一个宏块的帧内4x4预测。用SMIC 0.13um工艺库综合,结果显示该结构最高可运行在250M,面积约为116K门,可支持4096x2160@30fps视频序列的实时编码。  相似文献   

4.
Video compression performance of High Efficiency Video Coding (HEVC) is about twice of H.264/AVC video compression standard. The improvement in coding efficiency in HEVC is achieved by considerable increase in the computational load compared to H.264/AVC which is substantially very computational intensive. One of the units in HEVC which has changed considerably compared to H.264/AVC is Integer Discrete Cosine Transform (IDCT) unit. IDCT in HEVC standard includes 32 × 32, 16 × 16, 8 × 8 and 4 × 4 transforms. In this paper, a hardware solution for implementing the entire inverse IDCTs in HEVC decoder is proposed. The proposed hardware has a resource-sharing pipelined architecture. As a result, the hardware resources and computation time for implementing inverse IDCTs in HEVC decoder are reduced. Synthesis results by using NanGate OpenPDK 45 nm library indicate that the proposed hardware can achieve 222 MHz clock rate and can achieve real-time decoding of 4096 × 3072 video sequences with 70 fps.  相似文献   

5.
Due to the growing demand of digital convergence, there is a need to have a video encoder/decoder (codec) that is capable of supporting multiple video standards on a single platform. High Efficiency Video Coding (HEVC), successor to H.264/MPEG-4 AVC, is a new standard under development that aims to substantially improve coding efficiency compared to AVC High Profile. This paper presents an efficient architecture based on a resource sharing strategy that can perform the quantization operation of the emerging HEVC encoder and six other video encoders: H.264/AVC, AVS, VC-1, MPEG-2, MPEG-4, and Motion JPEG (MJPEG). Since HEVC is still in the drafting stage, the proposed architecture is designed in such a way that any final changes can be accommodated into the design. The proposed quantizer architecture is completely division-free, as the division operation is replaced by shift and addition operations for all the codecs. The design is implemented on an FPGA and later synthesized in CMOS 0.18 μm technology. While working at 190 MHz, the design can decode a 1080p HD video at up to 61 frames per second. The multi-codec architecture is also suitable for low-cost VLSI implementation.  相似文献   

6.
This article presents an architecture for the fractional motion estimation (FME) of the H.264/AVC video coding standard focusing in a good tradeoff between the hardware cost and the video quality. The support to FME guarantees a high quality in the motion estimation process. The applied algorithmic simplifications together with the multiplierless implementation and with a well balanced pipeline allow a low cost and a high throughput solution. The architecture was also designed to avoid redundant external memory accesses when computing the FME. The design was divided in two main modules: integer motion estimation (with diamond search algorithm) and fractional refinement (half-pixel and quarter-pixel interpolation and search). The designed architecture was described in VHDL and synthesized to an Altera Stratix III FPGA. The architecture is able to reach 260 MHz when running in the target FPGA. In worst case scenario, this operation frequency allows a processing rate of 43 HD 1080p (1,920 × 1,080 pixels) frames per second, surpassing the requirements for real time processing. In comparison to related works, the developed architecture was able to achieve a good tradeoff among hardware costs, video quality and processing rate.  相似文献   

7.
The standard H.264/AVC Intra frame encoding process has several data dependent and computational intensive coding methodologies that limit the overall encoding speed. It causes not only a high degree of computational complexity but also an unacceptable delay especially for the real-time video applications. Based on DCT properties and spatial activity analysis, low power hardware architecture for high throughput Full-Search Free (FSF) Intra mode selection and direction prediction algorithm is proposed. The FSF Intra prediction Algorithm significantly reduces the computational complexity and the processing run-time required for the H.264/AVC Intra frame prediction process. The ASIC implementation for the proposed architecture is carried out and synthesizing results are obtained. The heavily tested 45nm ASIC design is able to achieve an operating frequency of 140 MHz while limiting the overall power consumption to 9.01 mW, which nominates our proposed FSF Intra prediction architecture for interactive real-time H.264/AVC mobile video decoders.  相似文献   

8.
提出了基于DSP FPGA混合平台的H.264/AVC编码器设计思路与实现方法.以DSP为主处理器,FPGA为协处理器实现算法的硬件加速,针对编码器中最复杂耗时的模块,设计相应的硬件加速引擎.并针对硬件加速引擎制定出便于控制和数据传输的软/硬件通信协议,实现了H.264/AVC D1编码器所需的实时性能.  相似文献   

9.
In this paper, we propose an architecture for H.264/AVC fast intra-prediction-mode decision making in high resolution real-time applications. Intra-prediction-mode decision making requires many computations of H.264/AVC video coding, and also extra time for mode generation for intra prediction mode decisions. Hence, there exists a bottleneck in the execution of high resolution real-time applications. To improve the operation of intra prediction mode decision, we use an algorithm which, based on the edge information of an object, will reduce estimations of mode predictions by 66%; with negligible loss of video quality and a small increase in bit-rate of video stream. We propose a low cost architecture, with gate counts reduced by 50% compared with former design. The total gate count is 86,671 and the maximum operating frequency is 250 MHz using TSMC 0.18 μm cell-based technology. The experimental results show our design is a strong competitor with most modern high resolution, real-time video processing.  相似文献   

10.
In addition to coding efficiency, the scalable extension of H.264/AVC provides good functionality for video adaptation in heterogeneous environments. Fine grain scalability (FGS) is a technique to extract video bitstream at the finest quality level under the given bandwidth. In this paper, an architecture of FGS encoder with low external memory bandwidth and low hardware cost is proposed. Up to 99% of bandwidth reduction can be attained by the proposed scan bucket algorithm, early context modeling with context reduction, and first scan pre-encoding. The area-efficient hardware architecture is implemented by layer-wise hardware reuse. Besides, three design strategies for enhancement layer coder are explored so that the trade-off between external memory bandwidth and silicon area is allowed. The proposed hardware architecture can real-time encode HDTV 1920×1080 video with two FGS enhancement layers at 200 MHz working frequency, or HDTV 1280×720 video with three FGS enhancement layers at 130 MHz working frequency.  相似文献   

11.
In this paper, we propose an implicit line-based linear intra 16×16 prediction method for high-quality video coding. Typically, in H.264/AVC intra 16×16 vertical and horizontal prediction modes, 256 pixels in the current macroblock are predicted using 16 adjacent boundary pixels of reconstructed neighboring macroblocks. One problem of such a block-based intra prediction is that the prediction error increases as the distance between the reference and current pixels increases. Thus, the prediction accuracy of intra 16×16 vertical and horizontal modes is not sufficient for the mode decision stage. To ensure that the pixels are close to their predictor, we propose a new implicit intra prediction scheme, which makes full use of the correlation between lines instead of blocks. In the proposed method, we perform prediction, transformation, quantization, and reconstruction using the line-of-pixels (LOP) to improve the prediction accuracy. Experimental results show that the proposed algorithm provides an approximately 6.42?% bit-rate reduction compared to the H.264/AVC FRExt high profile, while maintaining the same decoding quality.  相似文献   

12.
The H.264/AVC video coding standard can achieves higher compression performance than previous video coding standards, such as MPEG-2, MPEG-4, and H.263. Especially, in order to obtain the high coding performance in intra pictures, the H.264/AVC encoder employs various directional spatial prediction modes and the rate-distortion (RD) optimization technique inducing high computational complexity. For further improvement in the coding performance with the low computational complexity, we introduce a sampling-based intra coding method. The proposed method generates two sub-images, which are defined as a sampled sub-image and a prediction error sub-image in this paper, from an original image through horizontal or vertical sampling and prediction processes, and then each sub-image is encoded with different intra prediction modes, quantization parameters, and scanning patterns. Experimental results demonstrate that the proposed method significantly improves the intra coding performance and reduces the encoding complexity with the smaller number of the RD cost calculation process.  相似文献   

13.
概述了AVS视频编解码标准的帧内预测技术,重点分析了帧内预测各种预测模式的算法,并将AVS的帧内预测技术和H.264/AVC标准的帧内预测技术进行了算法复杂度和性能的比较.在此基础上,设计了一种AVS帧内预测模块的硬件实现.并提出了一种可并行处理的计算单元结构.  相似文献   

14.
运动估计是H.264/AVC编码器的重要组成部分,其运算量占据了整个编码器计算时间的60%~90%。对H.264/AVC运动估计的几种快速搜索算法进行分析比较,并在此基础上提出先进的六边形搜索算法。给出运动估计快速搜索算法的一般硬件结构,并在此基础上提出具有流水线并行处理能力的先进六边形搜索算法的硬件结构。实验结果表明:该硬件结构系统工作频率能够达到109.06 MHz,完全能够满足高清视频实时应用的要求。  相似文献   

15.
Motion estimation in H.264/AVC, is done in two parts – integer motion estimation, and fractional motion estimation. Hardware reuse for both parts is inefficient due to the differences between them. In this paper we address the hardware reuse problem by proposing a, fast motion estimation algorithm as well as a pipelined FPGA-based, field programmable system-on-chip (FPSoC), for integer and fractional motion estimation. Our results show that the rate-distortion loss of our algorithm is insignificant when compared to full search in H.264/AVC. Its average Y-PSNR loss is 0.065 dB, its average percentage bit rate increase is 5 %, and its power consumption is 76 mW. Our FPSoC is hardware-efficient, even out-performing some state-of-the-art ASIC implementations. It can support up to high definition 1280?×?720p video at 24Hz. Thus, our proposed algorithm and architecture is suitable for delivery of high quality video on low power devices and low bit rate applications which typically use H.264/AVC baseline profile@levels 1–3.1.  相似文献   

16.
根据H.264/AVC的特点,设计出一种适合于帧内预测解码的硬件实现方式,并且引入了帧场自适应模式,有利于提高解码效率,并将该结构配合其他设计好的解码器模块,在FPGA上实现了标准清晰度的H.264视频的实时解码。  相似文献   

17.
For H.264/AVC encoding, the mode selection process consumes a large proportion of the overall computation. To reduce this burden, various fast mode decision algorithms have been proposed. The current fast mode decision algorithms usually exploit the relationship among the coding modes and use the context-based approach to reduce the number of modes to be checked for both intra coding and inter coding. The parallel capacity of hardware architectures are also taken into consideration. However, almost all the parallel fast mode decision designs are focusing on intra coding. In this paper, a hardware friendly parallel fast inter mode decision method is proposed. With the proposed method, the inter mode decision can be conducted efficiently in one pass and significant encoding speedup can be achieved with negligible coding efficiency loss. Moreover, the proposed method can be easily mapped to hardware architecture which can be used for the real-time video encoding.  相似文献   

18.
针对H.264/AVC视频编码器的系统芯片设计,通过分析分数像素运动估计(FME)模块的数据并行度和硬件利用率,探讨了分数像素运动矢量代价产生器的复用结构,再依据FME模块的具体设计约束,提出了可以复用产生1/2像素和1/4像素运动矢量代价的硬件实现结构,并且在FPGA开发板上进行了分数像素运动矢量代价产生器的设计验证。  相似文献   

19.
H.264帧内预测和模式判断的并行硬件结构设计   总被引:1,自引:1,他引:0  
针对H.264视频压缩编码算法中帧内预测和模式判断模块,分析并提出了一种高并行度的FPGA实现方法.完成了硬件结构的设计和验证.用VHDL实现本设计,综合后电路最大延迟为8.34 ns.仿真及综合结果表明.该设计能够完全满足高清数字视频的实时处理要求.  相似文献   

20.
In this letter, an adaptive scanning that improves intra coding efficiency in the H.264/AVC standard is proposed. The proposed adaptive scanning utilizes the prediction directions (modes) that include the horizontal and vertical edge information in a block. Depending on the prediction directions, the proposed method uses three scanning methods: zigzag scanning, horizontal scanning, and vertical scanning. In the proposed method, horizontal and vertical scanning are used in vertical and horizontal prediction modes, respectively, and the normal zigzag scanning in the H.264 standard is used in all other intra prediction modes. The proposed method reduces the bit rate by approximately 2.5% compared with H.264/AVC, without the degradation of video quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号