首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Screen Printed Resonant Tags for Electronic Article Surveillance Tags   总被引:1,自引:0,他引:1  
Screen printing has been employed to print resonant tags on a plastic film for using as a low cost electronic article surveillance tags. The resonant frequency of the printed resonant tags can be tuned by simply varying the lengths or sizes of printed inductors and capacitors. The quality factor (Q) of the printed resonant tags strongly depends on the sheet resistance of the printed inductive patterns. The maximum Q factor of printed resonant tags attained was about 45. Since this resonant tag can be printed roll-to-roll on plastic films, a number of tags with various resonance frequencies can be mass produced at a lower cost.   相似文献   

2.
Regarding the packet-switching problem, we prove that the weighed max-min fair service rates comprise the unique Nash equilibrium point of a strategic game, specifically a throughput auction based on a “least-demanding first-served” principle. We prove that a buffered crossbar switch can converge to this equilibrium with no pre-computation or internal acceleration, with either randomized or deterministic schedulers, (the latter with a minimum buffering of a single-packet per crosspoint). Finally, we present various simulation results that corroborate and extend our analysis.   相似文献   

3.
An integrated spectral-scanning nuclear magnetic resonance imaging (MRI) transceiver is implemented in a 0.12$ mu$m SiGe BiCMOS process. The MRI transmitter and receiver circuitry is designed specifically for small-scale surface MRI diagnostics applications where creating low (below 1 T) and inhomogeneous magnetic field is more practical. The operation frequency for magnetic resonance detection and analysis is tunable from 1 kHz to 37 MHz, corresponding to 0–0.9 T magnetization for $^{1}$ H (Hydrogen). The concurrent measurement bandwidth is approximately one frequency octave. The chip can also be used for conventional narrowband nuclear magnetic resonance (NMR) spectroscopy from 1 kHz up to 250 MHz. This integrated transceiver consists of both the magnetic resonance transmitter which generates the required excitation pulses for the magnetic dipole excitation, and the receiver which recovers the responses of the dipoles.   相似文献   

4.
In this brief, we introduce the passivity theory into the fault tolerance analysis for switched systems. We propose a “global passivity” concept which means that the total energy stored by the switched system is less than the total energy supplied from the outside. The individual passivity of each mode is not required, and the stability of the system can be achieved via the global energy dissipativity in the presence of faults. We further provide a “periodic fault tolerant passivity” to check the fault tolerance easily. The obtained results are extended to feedback interconnected systems. A switched RLC circuit example is taken to illustrate the efficiency of the proposed results.   相似文献   

5.
Time series of in vivo magnetic resonance images exhibit high levels of temporal correlation. Higher temporal resolution reconstructions are obtained by acquiring data at a fraction of the Nyquist rate and resolving the resulting aliasing using the correlation information. The dynamic imaging experiment is modeled as a linear dynamical system. A Kalman filter based unaliasing reconstruction is described for accelerated dynamic magnetic resonance imaging (MRI). The algorithm handles arbitrary readout trajectories naturally. The reconstruction is causal and very fast, making it applicable to real-time imaging. In vivo results are presented for cardiac MRI of healthy volunteers.   相似文献   

6.
The currents induced in long conductors such as guidewires by the radio-frequency (RF) field in magnetic resonance imaging (MRI) are responsible for potentially dangerous heating of surrounding media, such as tissue. This paper presents an optically coupled system with the potential to quantitatively measure the RF currents induced on these conductors. The system uses a self shielded toroid transducer and active circuitry to modulate a high speed light-emitting-diode transmitter. Plastic fiber guides the light to a photodiode receiver and transimpedance amplifier. System validation included a series of experiments with bare wires that compared wire tip heating by fluoroptic thermometers with the RF current sensor response. Validations were performed on a custom whole body 64 MHz birdcage test platform and on a 1.5 T MRI scanner. With this system, a variety of phenomena were demonstrated including cable trap current attenuation, lossy dielectric Q-spoiling and even transverse electromagnetic wave node patterns. This system should find applications in studies of MRI RF safety for interventional devices such as pacemaker leads, and guidewires. In particular, variations of this device could potentially act as a realtime safety monitor during MRI guided interventions.   相似文献   

7.
An information-theoretic framework for unequal error protection is developed in terms of the exponential error bounds. The fundamental difference between the bit-wise and message-wise unequal error protection ( UEP) is demonstrated, for fixed-length block codes on discrete memoryless channels (DMCs) without feedback. Effect of feedback is investigated via variable-length block codes. It is shown that, feedback results in a significant improvement in both bit-wise and message-wise UEPs (except the single message case for missed detection). The distinction between false-alarm and missed-detection formalizations for message-wise UEP is also considered. All results presented are at rates close to capacity.   相似文献   

8.
This paper deals with the maximum-likelihood (ML) noncoherent data-aided (e.g., no blind) synchronization of multiple-antenna ultrawideband impulse-radio (UWB-IR) terminals that operate over broadband channels and are affected by multipath fading with a priori unknown number of paths and path-gain statistics. The synchronizer that we developed achieves the ML data-aided joint estimate of the number of paths and their arrival times (e.g., time delays), without requiring any a priori knowledge and/or a posteriori estimate of the amplitude (e.g., module and sign) of the channel gains. The ultimate performance of the proposed synchronizer is evaluated (in closed form) by developing the corresponding CramÉr–Rao bound (CRB), and the analytical conditions for achieving this bound are provided. The performance gain for the synchronization accuracy of multipath-affected UWB-IR signals arising from the exploitation of the multiple-antenna paradigm is (analytically) evaluated. Furthermore, a low-cost sequential implementation of the proposed synchronizer is detailed. It requires an all-analog front-end circuitry composed of a bank of sliding-window correlators, whose number is fully independent from the number of paths comprising the underlying multiple-antenna channel. Finally, the actual performance of the proposed synchronizer is numerically tested under both the signal acquisition and tracking operating conditions.   相似文献   

9.
Along with the progress of advanced VLSI technology, noise issues in dynamic circuits have become an imperative design challenge. The twin-transistor design is the current state-of-the-art design to enhance the noise immunity in dynamic CMOS circuits. To achieve the high noise-tolerant capability, in this paper, we propose a new isolated noise-tolerant (INT) technique which is a mechanism to isolate noise tolerant circuits from noise interference. Simulation results show that the proposed 8-bit INT Manchester adder can achieve 1.66$times$ average noise threshold energy (ANTE) improvement. In addition, it can save 34% power delay product (PDP) in low signal-to-noise ratio (SNR) environments as compared with the 8-bit twin-transistor Manchester adder under TSMC 0.18-$mu$ m process.   相似文献   

10.
As receiver performance will be degraded by carrier frequency offset (CFO), Doppler shift, and low signal-to-noise ratio (SNR), a novel estimator that jointly considers CFO, Doppler shift, and SNR is proposed in this paper. The proposed algorithm uses the Fourier transform (FT) to calculate the power spectral density of time-varying channels through channel estimates. Then, a new periodogram technique is utilized to estimate CFO, Doppler shift, and SNR together. Unlike conventional methods in sinusoid estimation, which rely on the peak-value search of a periodogram, this paper exploits the hypothesis test to address the random frequency modulation of time-varying channels. Furthermore, to optimize estimation performance, a theoretical analysis is also provided on the influences of some key parameters, e.g., the length of the signal processed with fast FT , the amplitude threshold value, the SNR dynamic range, and the velocity dynamic range. Correspondingly, the appropriate key parameters are chosen according to this analysis and are validated by simulations. The results are consistent with our analysis and present high accuracy over a wide range of velocities and SNRs.   相似文献   

11.
Multiplicative noise is often present in medical and biological imaging, such as magnetic resonance imaging (MRI), Ultrasound, positron emission tomography (PET), single photon emission computed tomography (SPECT), and fluorescence microscopy. Noise reduction in medical images is a difficult task in which linear filtering algorithms usually fail. Bayesian algorithms have been used with success but they are time consuming and computationally demanding. In addition, the increasing importance of the 3-D and 4-D medical image analysis in medical diagnosis procedures increases the amount of data that must be efficiently processed. This paper presents a Bayesian denoising algorithm which copes with additive white Gaussian and multiplicative noise described by Poisson and Rayleigh distributions. The algorithm is based on the maximum a posteriori (MAP) criterion, and edge preserving priors which avoid the distortion of relevant anatomical details. The main contribution of the paper is the unification of a set of Bayesian denoising algorithms for additive and multiplicative noise using a well-known mathematical framework, the Sylvester–Lyapunov equation, developed in the context of the Control theory.   相似文献   

12.
A numerical dispersion analysis of the alternating-direction implicit finite-difference time-domain method for transverse-electric waves in lossy materials is presented. Two different finite-difference approximations for the conduction terms are considered: the double-average and the synchronized schemes. The numerical dispersion relation is derived in a closed form and validated through numerical simulations. This study shows that, despite its popularity, the accuracy of the double-average scheme is sensitive to how well the relaxation-time constant of the material is resolved by the time step. Poor resolutions lead to unacceptably large numerical errors. On the other hand, for good conductors, the synchronized scheme allows stability factors as large as 100 to be used without deteriorating the accuracy significantly.   相似文献   

13.
One problem with active measurement is that, while it is suitable for measuring time-average network performance, it is difficult to measure per-flow quality of service (QoS), which is defined as the average over packets in the flow. To achieve such per-flow QoS measurement, the authors proposed a new technique, called the change- of- measure-based passive/active monitoring (CoMPACT Monitor), which is based on the change-of-measure framework in probability/measure theory and transforms actively obtained information by using passively monitored data. This technique enables us to concurrently measure one-way delay information about individual users, applications, and organizations in detail in a lightweight manner. This paper presents the mathematical formulation for the CoMPACT Monitor and verifies that it works well under some weak conditions. In addition, we investigate its characteristics regarding several implementation issues through simulation and actual network experiments. The results reveal that our technique provides highly qualified estimates involving only a limited amount of extra traffic from active probes.   相似文献   

14.
Coupled transmission lines are experimentally characterized by using 4-port S-parameter measurements in a broad frequency band (up to 20 GHz). Test patterns are designed and fabricated by using a ball grid array (BGA) package process. Symmetrically coupled transmission lines are decoupled into two eigen modes that can be readily determined from the measured S-parameters. Then transmission line parameters and signal transient waveforms are directly determined by using the measured S-parameters. It is shown that not only are the transmission line parameters frequency-dependent, but also the frequency-variant effects and nonideal characteristics of transmission lines have a substantial effect on signal transients and crosstalk noises.   相似文献   

15.
Modern portable embedded devices require processors that can provide sufficient performance for demanding multimedia and wireless applications. At the same time they have to be flexible to support a wide range of products and extremely energy efficient to provide a long battery life. Coarse Grained Reconfigurable Architectures (CGRAs) potentially meet these constraints by providing a mix of flexible computational resources and large amounts of programmable interconnect. The vast design space of CGRAs complicates the development of optimized processors. Most effort has been spent on improving the performance. However, the energy cost of the programmable interconnect is becoming more expensive and this cost can no longer be neglected. In this work we present an energy- and performance-aware exploration for the interconnect of a CGRA and show that important tradeoffs can be made for those metrics. This will enable designers to develop more efficient architectures, tuned to a targeted application domain.   相似文献   

16.
Instead of the traditional spare row/column redundancy architectures, block-based redundancy architectures are proposed in this paper. The redundant rows/columns are divided into row/column blocks. Therefore, the repair of faulty memory cells can be performed at the row/column-block level. Moreover, the redundant row/column blocks can be used to replace faulty cells anywhere in the memory array. This global characteristic is helpful for repairing cluster faults. The proposed redundancy architecture can be easily integrated with the embedded memory cores. Based on the proposed global redundancy architecture, a heuristic modified essential spare pivoting (MESP) algorithm suitable for built-in implementation is also proposed. According to experimental results, the area overhead for implementing the MESP algorithm is very low. Due to efficient usage of redundancy, the manufacturing yield, repair rate, and reliability can be improved significantly.   相似文献   

17.
A perceptual color image coder (PCIC) is presented for the $YC_{b}C_{r}$ color space within the framework of JPEG2000. This coder employs a vision model based perceptual distortion metric (PDM) to approximate perceived error for rate-distortion (R-D) optimization in order to maximize the visual quality of coded images. The vision model employed in the PCIC is structurally based on an existing monochromatic multichannel vision model, which is extended for color image coding. Subjective tests with 30 viewers show that the PCIC provides superior picture quality at low to intermediate bitrates in comparison with a JPEG2000 compliant coder employing the mean squared error (MSE) and the visual distortion metric (Cvis) as distortion measures, respectively.   相似文献   

18.
A control strategy based on single current sensor is proposed for a four-switch three-phase brushless dc (BLDC) motor system to lower cost and improve performance. The system's whole working process is divided into two groups. In modes 2, 3, 5, and 6, where phase c works, phase- c current is sensed to control phases a and b, and phase-c current is consequently regulated. In modes 1 and 4, the combination of four suboperating modes for controlling phase-c current is proposed based on detailed analysis on the different rules that these operating modes have on phase-c current. Phase-c current is maintained at nearly zero level first, and phase- a and phase-b currents are regulated by speed circle. To improve control performance, a single-neuron adaptive proportional–integral (PI) algorithm is adopted to realize the speed regulator. Simulation and experimental systems are set up to verify the proposed strategy. According to simulation and experimental results, the proposed strategy shows good self-adapted track ability with low current ripple and strong robustness to the given speed reference model. Also, the structure of the drive is simplified.   相似文献   

19.
This paper presents a system for automotive crash detection based on hidden Markov models (HMMs). The crash pulse library used for training comprises a number of head-on and oblique angular crash events involving rigid and offset deformable barriers. Stochastic distribution characteristics of crash signals are validated to ensure conformity with the modeling assumptions. This step is achieved by analyzing the quantile–quantile (Q–Q) plot of actual pulses against the assumed bivariate Gaussian distribution. HMM parameters are next induced by utilizing the expectation–maximization (EM) procedure. The search for an optimal crash pulse model proceeds using the “leave-one-out” technique with the exploration encompassing both fully connected and left–right HMM topologies. The optimal crash pulse architecture is identified as a seven-state left–right HMM with its parameters computed using real and computer-aided engineering (CAE)-generated data. The system described in the paper has the following advantages. First, it is fast and can accurately detect crashes within 6 ms. Second, its implementation is simple and uses only two sensors, which makes it less vulnerable to failures, considering the overall simplicity of interconnects. Finally, it represents a general and modularized algorithm that can be adapted to any vehicle line and readily extended to use additional sensors.   相似文献   

20.
Message Scheduling for the FlexRay Protocol: The Static Segment   总被引:3,自引:0,他引:3  
In recent years, time-triggered communication protocols have been developed to support time-critical applications for in-vehicle communication. In this respect, the FlexRay protocol is likely to become the de facto standard. In this paper, we investigate the scheduling problem of periodic signals in the static segment of FlexRay. We identify and solve two subproblems and introduce associated performance metrics: 1) The signals have to be packed into equal-size messages to obey the restrictions of the FlexRay protocol, while using as little bandwidth as possible. To this end, we formulate a nonlinear integer programming (NIP) problem to maximize bandwidth utilization. Furthermore, we employ the restrictions of the FlexRay protocol to decompose the NIP and compute the optimal message set efficiently. 2) A message schedule has to be determined such that the periodic messages are transmitted with minimum jitter. For this purpose, we propose an appropriate software architecture and derive an integer linear programming (ILP) problem that both minimizes the jitter and the bandwidth allocation. A case study based on a benchmark signal set illustrates our results.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号