首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The atmospheric origin of nitrous acid (HONO) is largely unknown despite its estimated importance as an OH source during daytime due to its rapid photolysis. Recently, primary HONO contained in automobile exhaust as well as secondary HONO formation on soot particles have been invoked as possible HONO sources, but none of them is able to account for the observed HONO to NOx ratios of up to 0.04 in the atmosphere. In this paper, we show that semivolatile and/or water-soluble species contained in diesel exhaust are significantly involved in secondary HONO formation. These species are not associated with soot when the exhaust exits the tailpipe. To quantify these species and to assess the reaction kinetics leading to HONO, experiments were performed in which filtered but hot diesel exhaust gas interacted with a glass surface as well as a water film mimicking dry and wet surfaces to which exhaust might be exposed. A fraction of 0.023 of the NOx emitted was heterogeneously converted to HONO, which is at least three times more than the primary HONO emissions by diesel engines and a fraction of 50 larger than HONO formed on diesel soot particles that do not contain the semivolatile organics.  相似文献   

2.
Coupled partitioning, dilution, and chemical aging of semivolatile organics   总被引:3,自引:0,他引:3  
A unified framework of semi-volatile partitioning permits models to efficiently treat both semi-volatile primary emissions and secondary organic aerosol production (SOA), and then to treat the chemical evolution (aging) of the aggregate distribution of semi-volatile material. This framework also reveals critical deficiencies in current emissions and SOA formation measurements. The key feature of this treatment is a uniform basis set of saturation vapor pressures spanning the range of ambient organic saturation concentrations, from effectively nonvolatile material at 0.01 microg m(-3) to vapor-phase effluents at 100 mg m(-3). Chemical evolution can be treated by a transformation matrix coupling the various basis vectors. Using this framework, we show that semi-volatile partitioning can be described in a self-consistent way, with realistic behavior with respect to temperature and varying organic aerosol loading. The time evolution strongly suggests that neglected oxidation of numerous "intermediate volatility" vapors (IVOCs, with saturation concentrations above approximately 1 mg m(-3)) may contribute significantly to ambient SOA formation.  相似文献   

3.
We used the aerosol particle mass analyzer (APM) to measure the mass of mobility-classified diesel exhaust particles. This information enabled us to determine the effective density and fractal dimension of diesel particles as a function of engine load. We found that the effective density decreases as particle size increases. TEM images showed that this occurs because particles become more highly agglomerated as size increases. Effective density and fractal dimension increased somewhat as engine load decreased. TEM images suggest that this occurs because these particles contain more condensed fuel and/or lubricating oil. Also, we observed higher effective densities when high-sulfur EPA fuel (approximately 360 ppm S) was used than for Fischer-Tropsch fuel (approximately 0 ppm S). In addition, the effective density provides the relationship between mobility and aerodynamic equivalent diameters. The relationship between these diameters enables us to intercompare, in terms of a common measure of size, mass distributions measured with the scanning mobility particle sizer (SMPS) and a MOUDI impactor without making any assumptions about particle shape or density. We show that mass distributions of diesel particles measured with the SMPS-APM are in good agreement with distributions measured with a MOUDI and a nano-MOUDI for particles larger than approximately 60 nm. However, significantly more mass and greater variation were observed by the nano-MOUDI for particles smaller than 40 nm than by the SMPS-APM.  相似文献   

4.
5.
The Dekati mass monitor (DMM; Dekati Ltd., Finland), a relatively new real-time mass measurement instrument, was investigated in this project. In contrast to the existing gravimetric filter method also used as a standard for regulation purposes, this instrument provides second-by-second data on mass concentration in the engine exhaust gas. The principle of the DMM is based on particle charging, inertial and electrical size classification, and electrical detection of aerosol particles. This study focuses on the instrument's practical performance. Details on calibration and the theory of operation will be published elsewhere. The exhaust emissions of two heavy-duty engines complying with the Euro III emission standard were measured on a dynamic engine test bench. We looked atthe particle number and mass emissions of the engines in different transient test cycles and steady-state conditions. The ability to follow transient test cycles and the response times of the DMM were investigated. The aerosol mass concentration measured by the DMM was compared with the mass concentration obtained by the standard gravimetric filter method with Teflon-coated glass fiber filters. The total mass concentration (integral over the whole cycle) measured by the DMM is about 20% higher than that measured by the standard gravimetric filter method. The total mass concentration from the DMM was also compared with the volume concentration calculated from the electrical low-pressure impactor (ELPI) measurements. Correlations were made with other particle measuring systems. The DMM correlates very well with the particulate mass (R2 = 0.95) and exhibits good linearity and repeatability. The response time to a well-defined change in exhaust concentration was observed to be fast and stable. The DMM was able to follow transient test cycles and provides good results on a second-by-second basis. The instrument used in this study was still under development, and there is therefore no complete scientific background reference for the DMM. This study therefore focuses more on the measurements than on the scientific background. The measurements have shown thatthe DMM is an adequate instrument for measuring the mass concentration of engine exhaust, with results comparable to those from the standard gravimetric filter method. In addition, the DMM provides real-time second-by-second data of the mass concentration during transient test cycles.  相似文献   

6.
A monitoring campaign was conducted in August-September 2005 to compare different experimental approaches quantifying school bus self-pollution. As part of this monitoring campaign, a detailed characterization of PM2.5 diesel engine emissions from the tailpipe and crankcase emissions from the road draft tubes was performed. To distinguish between tailpipe and crankcase vent emissions, a deuterated alkane, n-hexatriacontane-d74 (n-C36D74) was added to the engine oil to serve as an intentional quantitative tracer for lubricating oil PM emissions. This paper focuses on the detailed chemical speciation of crankcase and tailpipe PM emissions from two school buses used in this study. We found that organic carbon emission rates were generally higher from the crankcase than from the tailpipe for these two school buses, while elemental carbon contributed significantly only in the tailpipe emissions. The n-C36D74 that was added to the engine oil was emitted at higher rates from the crankcase than the tailpipe. Tracers of engine oil (hopanes and steranes) were present in much higher proportion in crankcase emissions. Particle-associated PAH emission rates were generally very low (< 1 microg/km), but more PAH species were present in crankcase than in tailpipe emissions. The speciation of samples collected in the bus cabins was consistent with most of the bus self-pollution originating from crankcase emissions.  相似文献   

7.
Secondary organic aerosol (SOA) constitutes a significant fraction of total atmospheric particulate loading, but there is evidence that SOA yields based on laboratory studies may underestimate atmospheric SOA. Here we present chamber data on SOA growth from the photooxidation of aromatic hydrocarbons, finding that SOA yields are systematically lower when inorganic seed particles are not initially present. This indicates that concentrations of semivolatile oxidation products are influenced by processes beyond gas-particle partitioning, such as chemical reactions and/or loss to chamber walls. Predictions of a kinetic model in which semivolatile compounds may undergo reactions in both the gas and particle phases in addition to partitioning are qualitatively consistent with the observed seed effect, as well as with a number of other recently observed features of SOA formation chemistry. The behavior arises from a kinetic competition between uptake to the particle phase and reactive loss of the semivolatile product. It is shown that when hydrocarbons react in the absence of preexisting organic aerosol, such loss processes may lead to measured SOA yields lower than would occur under atmospheric conditions. These results underscore the need to conduct studies of SOA formation in the presence of atmospherically relevant aerosol loadings.  相似文献   

8.
Particle size distributions were measured under real world dilution conditions in the exhaust plume of a diesel passenger car closely followed by a mobile laboratory on a high speed test track. Under carefully controlled conditions the exhaust plume was continuously sampled and analyzed inside the mobile laboratory. Exhaust particle size distribution data were recorded together with exhaust gas concentrations, i.e., CO, CO2, and NO(x), and compared to data obtained from the same vehicle tested on a chassis dynamometer. Good agreement was found for the soot mode particles which occurred at a geometric mean diameter of approximately 50 nm and a total particle emission rate of 10(14) particles km(-1). Using 350 ppm high sulfur fuel and the standard oxidation catalyst a bimodal size distribution with a nucleation mode at 10 nm was observed at car velocities of 100 km h(-1) and 120 km h(-1), respectively. Nucleation mode particles were only present if high sulfur fuel was used with the oxidation catalyst installed. This is in agreement with prior work that these particles are of semivolatile nature and originate from the nucleation of sulfates formed inside the catalyst. Temporal effects of the occurrence of nucleation mode particles during steady-state cruising and the dynamical behavior during acceleration and deceleration were investigated.  相似文献   

9.
10.
The Dekati mass monitor (OMM) is an instrument which measures the mass concentration of airborne particles in real time by combining aerodynamic and mobility size particle classification. In this study, we evaluate the performance of the DMM by sampling exhaust from five engines and vehicles of different technologies in both steady-state and transient tests. DMM results are found higher than the filter-based particulate matter (PM) by 39 +/- 24% (range stands for +/- one standard deviation) for 62 diesel tests conducted in total and 3% and 14% higher, respectively, in two gasoline tests. To explore whether the difference occurs because of the different measurement principles of DMM and filter-based PM, the DMM operation is replicated over steady-state tests by combining an electrical low-pressure impactor (ELPI) and a scanning mobility particle sizer (SMPS). The correlation of ELPI and SMPS derived mass and filter-based PM is satisfactory (R2 = 0.95) with a mean deviation of 5 +/- 15%. For the same tests, the correlation of DMM with PM was also high (R2 = 0.95), but DMM exceeded PM by 44 +/- 23% on average. The comparison of ELPI and SMPS and DMM results reveals that the latter overestimates both the geometric mean diameter and especially the width of the particle mass-weighted size distribution. These findings demonstrate thatthe statistically significant difference between the DMM and the filter-based PM cannot just originate from the different measurement principles but also from the actual implementation of the combined aerodynamic-mobility measurement in the DMM. Optimizing the DMM will require changes in its design and/or the calculation algorithm to improve the resolution and width of the aerodynamic size distribution recorded.  相似文献   

11.
Mass spectrometric measurements of size and composition of diesel exhaust particles have been performed under various conditions: chassis dynamometer tests, field measurements near a German motorway, and individual car chasing. Nucleation particles consisting of volatile sulfate and organic material could be detected both at the chassis dynamometer test facility and during individual car chasing. We found evidence that if nucleation occurs, sulfuric acid/water is the nucleating agent. Low-volatile organics species condense only on the preexisting sulfuric acid/water clusters. Nucleation was found to depend strongly on various parameters such as exhaust dilution conditions, fuel sulfur content, and engine load. The latter determines the fraction of the fuel sulfur that is converted to sulfuric acid. The organic compounds (volatile and low-volatile) condense only on preexisting particles, such as both sulfuric acid nucleation particles and larger accumulation mode soot particles. On the latter, sulfuric acid also condenses, if the conditions for nucleation are not given. The overall ratio of sulfate to organic (volatile and low-volatile) is also strongly dependent on the engine load. It was found that the production of nucleation particles even at high engine load can be suppressed by using low-sulfur fuel.  相似文献   

12.
A controlled field experiment (CFE) methodology with a filter/sorbent sampler was used to minimize artifact effects when measuring values of the gas/particle (G/P) partitioning constant (Kp, m3 microg(-1)) for semivolatile organic compounds (SOCs) in the atmosphere. CFE sampling was conducted at three different locations (Beaverton, OR; Denver, CO; and Hills, IA). Kp values were measured for a series of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs). To examine the possible effects on the G/P partitioning of the amounts of organic material (om) phase, organic carbon (OC), and elemental carbon (EC) in the sampled particulate material, the measured Kp values were normalized by the aerosol mass fractions f(om), f(OC), and f(EC) according to Kp/ f(om), Kp/f(OC), and Kp/f(EC). Using a log-log format, the resulting normalized values were all found to be more highly correlated with the subcooled liquid vapor pressure p(L)o than were the unnormalized Kp values. For the PAHs,the one-parameter model assuming Kp = Kp,OC f(OC) yielded only slightly less variability in the predicted Kp values than did the one-parameter model Kp = Kp,EC f(EC). The two-parameter model Kp = Kp,OC f(OC) + Kp,EC f(EC) was found to provide only small improvements over each of the one-parameter models. Overall, the data are more consistent with an absorptive mechanism of partitioning to the particulate material but do not rule out some role for adsorption to particle surfaces. The data suggest that small amounts of organic carbon (f(OC) approximately 0.02) can have significant effects on the G/P partitioning of SOCs.  相似文献   

13.
14.
Release of water and volatile organics from wood drying   总被引:2,自引:0,他引:2  
  相似文献   

15.
An air quality model, URM-1ATM, was used to investigate tendencies in fine particle (PM2.5) species in response to changes in SO2 and NOx emissions in the eastern United States. The model employed the decoupled direct method (DDM) to estimate sensitivities without the need for multiple model runs for different emissions species and geographic regions. The baseline for sensitivities was emissions projected to 2010. Principal geographic regions investigated were east of the Mississippi River, although the contribution of a region to the immediate west of the river was also included in the study. Sensitivities to emissions changes from point sources (SO2 and NOx) and low-level sources (NOx) were computed. PM2.5 species examined were sulfate, organic carbon, and nitrate as well as total fine mass. Results for the midwest, mid-Atlantic, and southeast regions indicated that those regions affect their own aerosol levels the most. Aerosols in the northeast were most strongly linked to emissions from the midwest and mid-Atlantic regions. In general, midwest emissions had the most influence of any region on other regions. In addition, the southeast was relatively isolated, having the least influence outside itself and being least affected by neighboring regions. Sulfate was the species most sensitive to emission changes. Finally, the largest potential relative sensitivities of sulfate and organic aerosols, along with PM2.5 mass, to emissions changes were usually modeled to occur outside those areas computed to experience the highest aerosol levels.  相似文献   

16.
Diesel exhaust particles are the major constituent of urban carbonaceous aerosol being linked to a large range of adverse environmental and health effects. In this work, the effects of fuel reformulation, oxidation catalyst, engine type, and engine operation parameters on diesel particle emission characteristics were investigated. Particle emissions from an indirect injection (IDI) and a direct injection (DI) engine car operating under steady-state conditions with a reformulated low-sulfur, low-aromatic fuel and a standard-grade fuel were analyzed. Organic (OC) and elemental (EC) carbon fractions of the particles were quantified by a thermal-optical transmission analysis method and particle size distributions measured with a scanning mobility particle sizer (SMPS). The particle volatility characteristics were studied with a configuration that consisted of a thermal desorption unit and an SMPS. In addition, the volatility of size-selected particles was determined with a tandem differential mobility analyzer technique. The reformulated fuel was found to produce 10-40% less particulate carbon mass compared to the standard fuel. On the basis of the carbon analysis, the organic carbon contributed 27-61% to the carbon mass of the IDI engine particle emissions, depending on the fuel and engine operation parameters. The fuel reformulation reduced the particulate organic carbon emissions by 10-55%. In the particles of the DI engine, the organic carbon contributed 14-26% to the total carbon emissions, the advanced engine technology, and the oxidation catalyst, thus reducing the OC/EC ratio of particles considerably. A relatively good consistency between the particulate organic fraction quantified with the thermal optical method and the volatile fraction measured with the thermal desorption unit and SMPS was found.  相似文献   

17.
为研究典型烟用添加剂(包括丙二醇、丙三醇、呋喃酮、香兰素、乙酰丙酸、亚麻酸和棕榈酸)对不同粒径烟气气溶胶粒相物质量分布的影响以及在气溶胶中的粒径分布,采用单通道吸烟机-电子低压撞击器(ELPI),分12级捕集烟气气溶胶粒相物,进行重量分析研究粒相物的质量分布,并采用GC-MS和LC-MS/MS测定了7种添加剂在不同粒径气溶胶中的分布。实验结果表明,添加7种添加剂的卷烟样品,其气溶胶粒相物的质量均主要分布在中间粒径上(0.14~1.17 μm),但添加不同添加剂对气溶胶质量粒径分布的影响不同,总体趋势如下:香兰素、乙酰丙酸、亚麻酸和呋喃酮能增加大于0.431 μm处粒相物质量,使小于0.261 μm处粒相物质量减小;丙二醇和丙三醇使0.261 μm处粒相物的质量减少;棕榈酸无明显影响。7种添加剂在不同粒径气溶胶粒相物中的释放量均随粒径增加先增加后减小,与粒相物质量分布一致,并主要分布在中等粒径0.261~0.722 μm的颗粒中,但不同添加剂在不同粒径粒相物中的浓度(释放量与粒相物质量之比)呈现不同的分布趋势:随着粒径的增加,丙二醇、乙酰丙酸、亚麻酸和棕榈酸的浓度先增加后减小,丙三醇的浓度先减小后略微增加,香兰素和呋喃酮的浓度无明显差异。添加合适的烟草添加剂可改变烟气气溶胶粒相物的分布,并在不同粒径粒相物中呈现不同的分布特征,研究结果可为卷烟配方设计及卷烟安全性研究提供理论基础和数据支持。   相似文献   

18.
摘 要:卷烟主流烟气粒相经二氯甲烷浸提,进行GC/MS分析,对通风稀释、加长滤嘴后卷烟主流烟气粒相45种挥发性、半挥发性中性成分的变化进行了分析研究。通风稀释20%卷烟、25mm滤棒卷烟与参比卷烟(20mm滤棒)相比,45种中性成分总量分别减少了19.0%、30.7%。通风稀释、加长滤嘴后卷烟主流烟气不同中性成分减少的程度不同,分子量较小、沸点较低的物质减少较多,而分子量较大、沸点较高的物质减少较少。    相似文献   

19.
The partitioning behavior of a set of diverse SOCs on two and three component mixtures of aerosols from different sources was studied using smog chamber experimental data. A set of SOCs of different compound types was introduced into a system containing a mixture of aerosols from two or more sources. Gas and particle samples were taken using a filter-filter-denuder sampling system, and a partitioning coefficient Kp was estimated using Kp = Cp/(CgTSP). Particle size distributions were measured using a differential mobility analyzer and a light scattering detector. Gas and particle samples were analyzed using GCMS. The aerosol composition in the chamber was tracked chemically using a combination of signature compounds and the organic matter mass fraction (f(om)) of the individual aerosol sources. The physical nature of the aerosol mixture in the chamber was determined using particle size distributions, and an aggregate Kp was estimated from theoretically calculated Kp on the individual sources. Model fits for Kp showed that when the mixture involved primary sources of aerosol, the aggregate Kp of the mixture could be successfully modeled as an external mixture of the Kp on the individual aerosols. There were significant differences observed for some SOCs between modeling the system as an external and as an internal mixture. However, when one of the aerosol sources was secondary, the aggregate model Kp required incorporation of the secondary aerosol products on the preexisting aerosol for adequate model fits. Modeling such a system as an external mixture grossly overpredicted the Kp of alkanes in the mixture. Indirect evidence of heterogeneous, acid-catalyzed reactions in the particle phase was also seen, leading to a significant increase in the polarity of the resulting aerosol mix and a resulting decrease in the observed Kp of alkanes in the chamber. The model was partly consistent with this decrease but could not completely explain the reduction in Kp because of insufficient knowledge of the secondary organic aerosol composition.  相似文献   

20.
Particulate matter (PM) from biomass burning and diesel exhaust has distinct X-ray spectroscopic, carbon specific signatures, which can be employed for source apportionment. Characterization of the functional groups of a wide selection of PM samples (woodsmoke, diesel soot, urban air PM) was carried out using the soft X-ray spectroscopy capabilities at the synchrotron radiation sources in Berkeley (ALS) and Brookhaven (NSLS). The spectra reveal that diesel exhaust particulate (DEP) matter is made up from a semigraphitic solid core and soluble organic matter, predominantly with carboxylic functional groups. Woodsmoke PM has no or a less prevalent, graphitic signature, instead it contains carbon-hydroxyl groups. Using these features to apportion the carbonaceous PM in ambient samples we estimate that the relative contribution of DEP to ambient PM in an urban area such as Lexington, KY and St. Louis, MO is 7% and 13.5%, respectively. These values are comparable to dispersion modeling data from nonurban and urban areas in California, and with elemental carbon measurements in urban locations such as Boston, MA, Rochester, NY, and Washington, DC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号