共查询到20条相似文献,搜索用时 11 毫秒
1.
Sanjay K. Chattopadhyay R. K. Khandal Ramagopal Uppaluri Aloke K. Ghoshal 《应用聚合物科学杂志》2010,117(3):1731-1740
Composites were prepared with chemically modified banana fibers in polypropylene (PP). The effects of 40‐mm fiber loading and resin modification on the physical, mechanical, thermal, and morphological properties of the composites were evaluated with scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Infrared (IR) spectroscopy, and so on. Maleic anhydride grafted polypropylene (MA‐g‐PP) compatibilizer was used to improve the fiber‐matrix adhesion. SEM studies carried out on fractured specimens indicated poor dispersion in the unmodified fiber composites and improved adhesion and uniform dispersion in the treated composites. A fiber loading of 15 vol % in the treated composites was optimum, with maximum mechanical properties and thermal stability evident. The composite with 5% MA‐g‐PP concentration at a 15% fiber volume showed an 80% increase in impact strength, a 48% increase in flexural strength, a 125% increase in flexural modulus, a 33% increase in tensile strength, and an 82% increase in tensile modulus, whereas the heat deflection temperature increased by 18°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
2.
Sanjay K. Chattopadhyay R. K. Khandal Ramagopal Uppaluri Aloke K. Ghoshal 《应用聚合物科学杂志》2009,113(6):3750-3756
Environmentally benign, low cost and abundantly available short pineapple leaf fibers (PALF), found mostly in the Tropical rain forest climates are ideal materials for manufacture of thermoplastic polymer‐matrix composites. Here, mechanical and thermal properties of composites of maleic anhydride grafted polypropylene (MA‐g‐PP) and chemically modified short PALF are studied as a function of different fiber lengths at 10 vol % fibers loading with fiber orientation in the longitudinal direction. The effects of fiber lengths and fiber loading on the morphological properties are assessed via observations by scanning electron microscopy. Fiber length of 6 mm oriented longitudinally at 10 vol % fibers loading in PP is the optimum and recommended composition, where 73% increase in impact properties, 37% increase in the flexural modulus, 33% increase in flexural strength, and 14% increase in vicat softening temperature are observed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
3.
Alinaghi Karimi Saleh Nazari Ismaeil Ghasemi Mehdi Tajvidi Ghanbar Ebrahimi 《应用聚合物科学杂志》2006,102(5):4759-4763
The effect of the delignification of hornbeam fibers on the mechanical properties of wood fiber–polypropylene (PP) composites was studied. Original fibers and delignified fibers at three levels of delignification were mixed with PP at a weight ratio of 40:60 in an internal mixer. Maleic anhydride (0.5 wt %) as the coupling agent and dicumyl peroxide (0.1 wt %) as the initiator were applied. The produced composites were then hot‐pressed, and specimens for physical and mechanical testing were prepared. The results of the properties of the composite materials indicate that delignified fibers showed better performance in the enhancement of tensile strength and tensile modulus, whereas the hardness of the composites was unaffected by delignification. Delignified fibers also exhibited better water absorption resistance. Notched impact strength was higher for delignified fiber composites, but it was reduced at higher delignification levels. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4759–4763, 2006 相似文献
4.
Ink‐eliminated sludge flour (IESF), a waste residue from the recycling treatment of waste paper, is a promising new kind of filler for thermoplastic polymers with a good price/performance ratio and advantages for environmental protection. In this study, high‐impact polypropylene (PP) and maleic anhydride grafted polypropylene (MAPP) were chosen as a polymer matrix and a coupling agent, respectively, for the preparation of IESF/PP composites, and the structures and properties of the obtained composites were also investigated. The experimental results revealed that IESF not only induced the crystallization orientation of PP along the b axis but also had a restraining effect on the formation of the β phase during the recrystallization of PP from the melt; the addition of MAPP further strengthened this effect to some extent. In addition, the proper addition of MAPP was helpful for improving the thermal stability of the IESF/PP composites. With the strengthening of the interfacial interaction between the IESF and PP matrix by MAPP, the resultant efficient stress transfer from the PP matrix to the IESF particles led to increased tensile and flexural strength. However, the original greater rigidity of MAPP, with respect to PP, reduced the toughness of the composites and caused some negative effects on the impact strength and the elongation at break. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2320–2325, 2004 相似文献
5.
Maleic anhydride grafted polypropylene (MAPP) was blended with ethylene–vinyl acetate (EVA) copolymer to form MAPP/EVA polymer blends. Wood powder (WP) was mixed into these blends at different weight fractions to form MAPP/EVA/WP blend composites. Differential scanning calorimetry (DSC) analysis of the blends showed small melting peaks between those of EVA and MAPP, which indicated interaction and cocrystallization of fractions of EVA and MAPP. The presence of MAPP influenced the EVA crystallization behavior, whereas the MAPP crystallization was not affected by the presence of EVA. Scanning electron microscopy, Fourier transform infrared spectroscopy, and DSC results show that the WP particles in the MAPP/EVA blend were in contact with both the MAPP and EVA phases and that there seemed to be chemical interaction between the different functional groups. This influenced the crystallization behavior, especially of the MAPP phase. The thermogravimetric analysis results show that the MAPP/EVA blend had two degradation steps. An increase in the WP content in the blend composite led to an increase in the onset of the second degradation step but a decrease in onset of the first degradation step. The presence of WP in the blend led to an increase in the modulus but had almost no influence on the tensile strength of the blend. The dynamic mechanical analysis results confirm the interaction between EVA and MAPP and show that the presence of WP only slightly influenced the dynamic mechanical properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
6.
Wheat straw fiber‐polypropylene (PP) composites were prepared to investigate the effects of wheat straw fiber content (10, 20, 30, 40, and 50 wt %), fiber size (9, 28, and 35 mesh), and maleic anhydride grafted polypropylene (MAPP) concentration (1, 2, 5, and 10 wt %) on the static and dynamic mechanical properties of the wheat straw fiber‐PP composites in this study. The tensile modulus and strength of the composites increased linearly with increasing wheat straw fiber content up to 40%, whereas the elongation at break decreased dramatically to 3.78%. Compared with the composites made of the longer wheat straw fiber, the composites made of the fines (>35 mesh) had a slightly higher tensile strength of 31.2 MPa and tensile elongation of 5.39% at break. With increasing MAPP concentration, the composites showed an increase in tensile strength, and the highest tensile strength of 34.0 MPa occurred when the MAPP concentration reached 10 wt %. As wheat straw fiber content increased from 0 to 40%, the flexural modulus of the composites increased gradually from 1335 to 3437 MPa. The MAPP concentration and wheat straw fiber size distribution had no appreciable effect on the static flexural modulus of the composites. The storage flexural modulus of the composites increased with increasing wheat straw fiber content. The scanning electron microscopy (SEM) observation on the fracture surface of the composites indicated that a high wheat straw fiber content (>30 wt %) resulted in fiber agglomeration and a reduction in interfacial bonding strength. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
7.
To improve the interaction between syndiotactic polypropylene (SPP) and fibrous cellulose (FC), the effects of the addition of maleated polypropylene (MAPP) and FC surface modification with 3‐aminopropyltriethoxysilane (APTES) on SPP/FC composites were studied with respect to the morphology and the tensile properties. The addition of MAPP brought about an improvement in the interfacial adhesion between SPP and FC according to scanning electron microscopy observations and tensile testing. This improvement was, however, less effective than the improvement in the interfacial adhesion between isotactic polypropylene (IPP) and FC. SPP and MAPP partially or microscopically phase‐separated because of the IPP‐like polymer chain structure of MAPP. With respect to the compatibility between SPP and FC, FC surface modification with APTES was more suitable. The increase in Young's modulus was remarkable in the SPP/silanized FC composite with APTES. The tensile strength of the SPP/silanized FC composite with APTES was, however, considerably lower than that of the SPP/FC/MAPP composite. These results suggest that interfacial improvement between SPP and FC requires a compatibilizer or a surface modifier with a suitable primary structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
8.
This study was performed with commercially available phenyl trimethoxysilane (PTMS) and neoalkoxytitanate [i.e., neopentyl(diallyl)oxytri(dioctyl)phosphato titanate (LICA 12)] as coupling agents. PTMS and LICA 12 were used to treat talc and kaolin to compare their effects with untreated fillers upon incorporation into polypropylene (PP). Single‐filler PP composites (containing either talc or kaolin) and hybrid‐filler composites (containing a mix of both talc and kaolin) were compounded in a twin‐screw extruder and subsequently injection‐molded into dumbbells. The incorporation of PTMS and LICA 12 slightly decreased the tensile and flexural properties in terms of modulus and strength but increased the elongation at break for both single‐filler and hybrid‐filler composites. There was also a significant improvement in the impact strength of the composites, particularly those treated with LICA 12. The hybrid composites, through the synergistic coalescence of positive characteristics from talc and kaolin with the aid from chemical treatment provided an economically advantageous material with mechanical properties comparable to those of the single‐filler‐filled PP composites. Further investigations on flow and morphological properties were also done to correlate the mechanical properties of the single‐ and hybrid‐filler‐filled PP composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
9.
Oil palm empty fruit bunch (EFB)‐filled polypropylene (PP) composites were produced. The EFB filler was chemically modified with maleic anhydride (MAH). The effects of the filler size and chemical modification of EFBs on the tensile and dimensional stability properties of EFB–PP composites were studied. The composites with MAH‐treated EFBs showed higher tensile strengths than those with untreated EFBs. This was attributed to the enhanced compatibility between the MAH‐treated EFBs and PP matrix, as shown in a scanning electron microscopy study. Fourier transform infrared analysis showed evidence of C?C and C?O bonds from MAH at 1630 and 1730 cm?1, respectively. The MAH‐treated PP composites showed lower water absorption and thickness swelling than those with untreated EFBs. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 827–835, 2003 相似文献
10.
Polypropylene (PP)/polystyrene (PS) blends modified with reactive monomers, such as maleic anhydride (MAH) and styrene (St), and in situ formed PP/PS blends were prepared by melting extrusion. The crystallization and melting behavior and the dynamic mechanical properties of the PP/PS blends, including the structure of the grafted copolymer, were investigated with differential scanning calorimetry, dynamic mechanical analysis, and Fourier transform infrared. The results indicated that the addition of MAH hardly influenced the crystallization temperature of PP in the blends, but the addition of MAH and St increased the crystallization temperature of PP in its blends. The blends showed no remarkable variety for the melting temperature, but the shapes of the melting peaks were influenced by the addition of the reactive monomers. In addition, a significant increase in the storage and loss moduli of all the modified PP/PS blends was observed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2038–2045, 2005 相似文献
11.
The effect of oxidized polypropylene (OPP) as new compatibilizer on the water absorption and mechanical properties of wood flour–polypropylene (PP) composites were studied and compared with maleic anhydride grafted polypropylene (MAPP). The oxidation of PP was performed in the molten state in the presence of air. Wood flour, PP, and the compatibilizers (OPP and MAPP) were mixed in an internal mixer at temperature of 190°C. The amorphous composites removed from the mixer were then pressed into plates that had a nominal thickness of 2 mm and nominal dimensions of 15 × 15 cm2 with a laboratory hydraulic hot press at 190°C. Physical and mechanical tests showed that the wood flour–PP composites with OPP exhibited higher flexural and impact properties but lower water absorption than MAPP. All of the composites with 2% compatibilizers (OPP and MAPP) gave higher flexural and impact properties and lower water absorption compared to those with 4% compatibilizers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
12.
Composites of palm fibers and poly(propylene) (PP) were compounded in an extruder at 200°C. The composites were subsequently injection molded into standard tensile specimens for mechanical characterization. The fracture morphology of the specimens was analyzed by scanning electron microscopy. It was observed that the composite modulus increased with the increase of fiber content, indicating the existence of adhesion between PP and the much stiffer palm fibers. However, the adhesion was not satisfactory and resulted in a decrease in the composite tensile strength with fiber addition. The compatibilizer Epolene E‐43 was used to minimize this incompatibility between the wood fibers and the PP matrix. The maleated PP additive enhanced the fiber–matrix adhesion, resulting in an improvement in composite performance. Also, small fibers showed better mechanical properties than those of long fibers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2581–2592, 2004 相似文献
13.
M. B. Abu Bakar Z. A. Mohd Ishak R. Mat Taib H. D. Rozman S. Mohamad Jani 《应用聚合物科学杂志》2010,116(5):2714-2722
Polypropylene (PP) composites filled with wood flour (WF) were prepared with a twin‐screw extruder and an injection‐molding machine. Three types of ecologically friendly flame retardants (FRs) based on ammonium polyphosphate were used to improve the FR properties of the composites. The flame retardancy of the PP/WF composites was characterized with thermogravimetric analysis (TGA), vertical burn testing (UL94‐V), and limiting oxygen index (LOI) measurements. The TGA data showed that all three types of FRs could enhance the thermal stability of the PP/WF/FR systems at high temperatures and effectively increase the char residue formation. The FRs could effectively reduce the flammability of the PP/WF/FR composites by achieving V‐0 UL94‐V classification. The increased LOI also showed that the flammability of the PP/WF/FR composites was reduced with the addition of FRs. The mechanical property study revealed that, with the incorporation of FRs, the tensile strength and flexural strength were decreased, but the tensile and flexural moduli were increased in all cases. The presence of maleic anhydride grafted polypropylene (MAPP) resulted in an improvement of the filler–matrix bonding between the WF/intumescent FR and PP, and this consequently enhanced the overall mechanical properties of the composites. Morphological studies carried out with scanning electron microscopy revealed clear evidence that the adhesion at the interfacial region was enhanced with the addition of MAPP to the PP/WF/FR composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
14.
I. L. Dubnikova S. M. Berezina Yu. M. Korolev G.‐M. Kim S. M. Lomakin 《应用聚合物科学杂志》2007,105(6):3836-3850
Nanocomposites polypropylene (PP) with 3 and 7 wt % of clay were prepared by melt mixing. Four types of maleic anhydride grafted PP (MAPP) in broad range of MA groups content (0.3–4 wt %) and molecular weights (MW) were used as polar compatibilizers. The effect of the MAPP kind on both the clay dispersion and miscibility with PP was studied. The mixed intercalated/exfoliated morphologies of nanocomposites in the presence of all studied compatibilizers were revealed by XRD and TEM. The oligomer compatibilizer with 4 wt % of MA groups increases the intercalation ability of polymer into clay galleries but this one has limited miscibility with PP and worsens crystalline structure of polymer matrix. The MAPPs with 0.3–1.3% of MA are characterized by the lower intercalation ability but well cocrystallize with PP. Maximum reinforcing effect is attained using high MW MAPP with 0.6% MA and for nanocomposite with 7 wt % (3.8 vol %) of clay it averages almost 1.7 times relative to neat PP and 1.3 times relative to noncompatibilized composite. Dynamic storage moduli of nanocomposites compatibilized by MAPPs with 0.3–1.3% of MA containing 7 wt % of clay increase up to 1.4–1.5 around 30–75°C and over the whole temperature range remain higher compared with both neat PP and uncompatibilized composite. On the contrary, the oligomer MAPP with 4 wt % of MA groups decreases the thermal–mechanical stability of nanocomposite at high temperature compared with both PP and uncompatibilized composites. The study of nanocomposites flammability showed that creating complex composites containing both layered silicate and relatively small amount of magnesium hydroxide can be a successful approach to reduce the combustibility of PP‐based nanocomposites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
15.
C. González‐Sánchez M. González‐Quesada M. U. de la Orden J. Martínez Urreaga 《应用聚合物科学杂志》2008,110(5):2555-2562
The desire to improve the properties of cellulose‐reinforced composites while producing them by methods as similar as possible to those used on an industrial scale is one of the driving forces in this field of research. In this work, extensive research for determining the mechanical, thermal, rheological, and physical properties of novel cellulose‐reinforced polypropylene composites containing a polyethylenimine (PEI) coupling agent was conducted. A comparison of their properties with those of reference composites without any coupling agent or containing a maleated polypropylene (MAPP) coupling agent was also carried out. The presence of the PEI coupling agent mainly gave rise to a substantial increase in the tensile and flexural strengths and elongations as well as the impact strength, heat deflection temperature (HDT), melt volume flow index, and water absorption of PEI‐containing composites in comparison with composites without any coupling agent added. However, the increases achieved in the tensile and flexural composite strengths and HDT were lower than those achieved with the MAPP coupling agent mainly for composites containing 50 wt % cellulose fibers. On the other hand, PEI‐containing composites exhibited, in most cases, larger elongations and energies required to break in tensile tests as well as larger impact strengths, melt volume flow indices, and water absorption percentages than MAPP‐containing composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
16.
Ming Tian Jibin Han Hanguang Wu Hongchi Tian Qingyan She Wenquan Chen Liqun Zhang 《应用聚合物科学杂志》2012,124(3):1999-2006
In this study, the morphologies of three types of acrylonitrile–butadiene rubber (NBR)/polypropylene (PP) thermoplastic vulcanizates (TPVs) (with an NBR/PP blend ratio of 70/30) were compared. The TPVs were (1) an ultrafine fully vulcanized acrylonitrile–butadiene rubber (UFNBR)/PP TPV made by the mechanical blending of UFNBR with PP, (2) a dynamically vulcanized NBR/PP TPV without the compatibilization of maleic anhydride grafted polypropylene (MP) and amine‐terminated butadiene–acrylonitrile copolymer (ATBN), and (3) a dynamically vulcanized NBR/PP TPVs with the compatibilization of MP and ATBN. The influence of the compatibility therein on the size of the dispersed vulcanized NBR particles and the crystallization behavior of the PP in the TPVs and the resultant properties are also discussed. As indicated by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, polarizing microscopy, dynamic mechanical thermal analysis, and rheological and mechanical testing, the compatibility was significantly improved by the reactive compatibilization of MP and ATBN, which led to a uniform and fine morphology. The compatibilization increased the crystallization rate and reduced the size of the spherulites of PP. On the other hand, it was found that the dispersed vulcanized NBR particles lowered the degree of crystallinity. The better the compatibility of the blend was, the lower the degree of crystallinity and the storage modulus were, but the higher the loss factor and the processing viscosity were. All TPVs showed almost the same oil resistance, but the TPV prepared with reactive compatibilization had the best mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
17.
Polypropylene (PP)/montmorillonite (MMT) nanocomposites were prepared by the esterification of propylene‐g‐maleic anhydride (MAPP) with MMT modified with α,ω‐hydroxyamines. The structural characterization confirmed the formation of ester linkages and the interaction between the silicate layers. In particular, X‐ray diffraction patterns of the modified clays and MAPP/MMT composites showed 001 basal spacing enlargement as great as 0.14–0.62 nm according to the type of α,ω‐hydroxyamine. Thermal characterization by thermogravimetric analysis for the composites revealed increased onset temperatures of thermal decomposition. The melting peak temperature decreased, and the crystallization peak temperature increased; this indicated that MMT retarded the crystallization of MAPP. Compounding PP with MAPP/MMT composites enhanced the tensile modulus and tensile strength of PP. However, the elongation at break decreased drastically even when the MMT content was as low as 0.4–2.0 wt %. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1229–1234, 2005 相似文献
18.
A maleic anhydride grafted propylene–butadiene copolymer (MPPB) was prepared. Fourier transform infrared spectroscopy and 1H‐NMR results indicate that the maleic anhydride molecules reacted with the double bond in the butadiene unit of the propylene–butadiene copolymer (PPB), and the grafting percentage increased with the butadiene content in the initial copolymer. The gel permeation chromatography results show that the introduction of butadiene in the copolymer prevented the degradation of PPB. The MPPB was applied in polypropylene (PP)/styrene‐butadiene‐styrene triblock copolymer (SBS)/organophilic montmorillonite (OMMT) composites as a compatibilizer. In the presence of 10‐phr MPPB, the impact strength of the composite was improved by about 20%. X‐ray diffraction patterns indicated the formation of the β‐phase crystallization of PP in the presence of MPPB, and a significant decrease in the spherulite size was observed. Transmission electron microscopy (TEM) images showed that the OMMT was better dispersed in the matrix upon the inclusion of MPPB. A better distribution of the rubber phase and a rugged fracture surface were observed in the scanning electron microscopy images as the MPPB proportion was increased. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
19.
Hai Huang Bing Han Lei Wang Ning Miao Hong Mo Ning‐Lin Zhou Zhen‐Mao Ma Jun Zhang Jian Shen 《应用聚合物科学杂志》2011,119(3):1516-1527
The subject of this study was the crystallization behavior and thermal properties of polypropylene (PP)/maleic anhydride (MAH) modified nano calcium carbonate (nano‐CaCO3) composites. In this study, 5 wt % nano‐CaCO3 modified with different contents of MAH was filled into a PP matrix. X‐ray diffraction and differential scanning calorimetry were used to characterize the crystal morphology and crystallization kinetics of a series of composites. The results demonstrate that the nano‐CaCO3 modified with MAH had an important effect on the thermal and morphological properties of the nanocomposites. The Avrami exponent of the pure PP was an integer, but those of the composites were not integers, but the crystallization rate constant decreased as the content of MAH in the nano‐CaCO3 filler increased in isothermal crystallization. In nonisothermal crystallization, the kinetic parameter F(T) and the degree of crystallinity of pure PP were compared with those of the PP composites filled with nano‐CaCO3. We suggest that heterogeneous nucleation existed in the PP composites and that the transformation and retention of the β‐form crystal into the α‐form crystal took place in the composite system and the β‐form crystal had a higher nucleation rate and growth process than the α‐form crystal in the PP composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
20.
The addition of organic fillers into thermoplastic polymers is an interesting issue, which has had growing consideration and experimentation during the last years. It can give rise to several advantages. First, the cost of these fillers is usually very low. Also, the organic fillers are biodegradable (thus contributing to an improved environmental impact), and finally, some mechanical and thermomechanical properties can be enhanced. In this study, the effect of the addition of different organic fillers on the mechanical properties and processability of an extrusion‐grade polypropylene were investigated. The organic fillers came from natural sources (wood, kenaf, and sago) and were compared to short glass fibers, a widely used inorganic filler. The organic fillers caused enhancements in the rigidity and thermomechanical resistance of the matrix in a way that was rather similar to the one observed for the inorganic filler. A reduction in impact strength was observed for both types of fillers. The use of an adhesion promoter could improve their behavior. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1906–1913, 2005 相似文献