首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用一次换向+四火次轧制、二次换向+四火次轧制和一次换向+三火次大变形轧制3种工艺制备了厚度10.0mm的TA15钛合金中板,研究了轧制工艺对板材显微组织和力学性能的影响。结果表明:3种TA15钛合金中板显微组织均为α+β两相区加工组织,但采用二次换向+四火次轧制的样品B显微组织中初生α相尺寸最为细小、等轴化程度最高;3种TA15钛合金板材室温和高温力学性能均符合GJB 2505A—2008标准要求,但采用一次换向+三火次大变形轧制的样品C室温和500℃高温抗拉强度横纵向差异最小,500℃高温持久性能最佳。  相似文献   

2.
研究了TA15钛合金超塑性变形后显微组织的演变及变形条件对超塑性变形行为的影响。结果表明:在变形温度为850~950℃、应变速率为1×10-4~1×10-3s-1超塑性拉伸时,TA15钛合金表现出良好的超塑性变形性能,且在900℃,5.5×10-4s-1变形条件下,延伸率最大为803.3%。在应变速率不变的条件下,随着变形温度的升高,α相晶粒尺寸增大,β相含量增加,晶粒仍保持细小、等轴状态。在变形温度一定时,随着应变速率的降低,α相晶粒尺寸增大,β相含量增加。同时变形程度对显微组织有显著影响,拉伸后不同部位的显微组织均有一定程度的粗化,变形程度越大,晶粒粗化的越明显,并伴有α相到β相的转变。变形过程中,加工硬化与变形软化相互竞争,表现为传统超塑变形的稳态流动特征。  相似文献   

3.
本文研究ZnAl5-0.03合金超塑性拉伸变形的力学行为。实验表明,合金具有极优异的超塑性(δ≥5000%)。其超塑性能参量(δ、m)依温度变化的规律不同于一般的细晶材料,不存在呈现δ和m峰值的温度区间。合金在试验选取的范围内,应力对应变速率具有高的敏感性。合金呈现超塑效应的温度和应变速率范围均较宽广。轧制状态下,合金具有变形纤维组织,其对超塑变形有利,轧态合金可直接作为超塑态用于成形加工而不需进行特殊的超塑性处理,有利于工业应用。  相似文献   

4.
研究了真空环境中TA32钛合金在950℃,初始变形速率在5.32×10-4~2.08×10-2s-1条件下的超塑性变形行为。结果表明,不同应变速率条件下,板材的流变应力曲线特征和显微组织演变呈现显著不同。在应变速率较低条件下(5.32×10-4 ~3.33×10-3s-1),拉伸真应力-应变曲线呈传统超塑变形的稳态流动特征,变形后的板材中初生α相晶粒尺寸较大;在高应变速率(8.31×10-3 s-1~2.08×10-2 s-1)条件下,拉伸真应力-应变曲线中流变应力增大到峰值后快速单调递减直到断裂,变形后的板材中初生α相发生动态再结晶,晶粒尺寸与低应变速率条件拉伸的板材相比显著细化。在950℃下,TA32钛合金板材均具有超塑性变形能力,超塑性延伸率在145%~519%之间,当应变速率为5.32×10-4s-1时,板材具有最佳的超塑性性能,拉伸延伸率可达519%。断裂区分析发现,TA32钛合金板材的超塑性断裂模式为空洞聚集-连接-长大型断裂。  相似文献   

5.
纯铍在室温条件下轧制的低塑性和冷脆性限制了其板材厚度超薄化、面积大尺寸化。采用金相显微镜、单向拉伸和轧制试验,研究了变形温度对纯铍板材断后伸长率、最大道次加工率和显微组织的影响。结果表明:随着变形温度的增加,纯铍板材塑性呈先增强后降低的波动变化趋势,并在325~350℃和600~700℃区间出现两个最佳塑性区。纯铍板材在第二个最佳塑性区轧制变形时,晶粒沿轧制方向被拉长并发生一定程度的动态再结晶,晶粒得到细化,显微组织得到一定程度的改善,且轧制温度越高显微组织改善的程度越高。纯铍板材在第二个最佳塑性区退火过程的再结晶程度随温度的升高逐渐趋向完全。为了显著改善纯铍板材的显微组织并使其再结晶程度趋于完全,热轧温度和退火温度宜选择在600~700℃区间。  相似文献   

6.
通过设计两种换向轧制工艺,采用2 800 mm四辊可逆热轧机成功制备了满足GJB 2505A—2008标准要求的3.5 mm厚TA6钛合金薄板,并研究了轧制工艺对TA6钛合金板材显微组织和力学性能的影响。研究结果表明:采用这两种不同轧制工艺轧制TA6钛合金板材,当总变形量为72%时,板材内部均为混乱的魏氏组织,且组织均匀性差,纵横向抗拉强度差值大于50 MPa;随着变形量增大,组织不断细化,强度不断提高,当变形量达到89%以上时,与B工艺相比,采用A工艺得到的板材组织均匀性更好,且纵横向抗拉强度差值小于20 MPa。采用A工艺制备的TA6钛合金板材退火后为细小均匀的再结晶组织,且力学性能满足GJB 2505A—2008标准要求。  相似文献   

7.
为制定和优化TC4钛合金中厚板轧制工艺,开发综合力学性能优异的TC4钛合金中厚板,某公司基于4 300 mm热轧厂装备特点开展了TC4钛合金中厚板轧制工业试验,研究了轧制温度、道次变形量对其显微组织和力学性能的影响规律。结果表明:在(α+β)两相区,随着轧制温度降低,TC4钛合金中厚板的晶粒尺寸不断减小,强度、塑性和韧性不断增加;随着道次变形量降低,中厚板表层与心部的显微组织更加均匀,塑性和韧性显著提高。经过退火处理(850℃×2 h,AC)后,TC4钛合金中厚板的组织均匀性明显提高,实现了强度—塑性—韧性的良好匹配。  相似文献   

8.
研究了轧制工艺和退火温度对TC4ELI钛合金厚板显微组织的影响。结果表明:采用工艺1轧制后的板材显微组织为双态组织;采用工艺2轧制后板材的显微组织为网篮组织。将网篮组织板材在不同温度下退火后发现:退火温度低于900℃时,板材显微组织没有明显变化,仍为网篮组织;退火温度为940℃时,板材显微组织中出现了再结晶现象,一部分条状α相变成等轴状α相,网篮组织向等轴组织过渡。合适的退火温度为780~900℃。  相似文献   

9.
对TC21钛合金板材进行不同工艺的热轧制及热处理试验,阐明了不同工艺条件下微观组织的演变规律,明确了板材强塑性、冲击功以及断裂行为与不同显微组织之间的对应关系。研究表明,随着轧制温度从930℃升高至1060℃,板材显微组织依次由板条组织变为等轴组织再变为双态组织,该过程中板材强度降低,塑性变化不大,冲击韧性无明显的规律性,960℃和1060℃轧制时板材冲击韧性较高;通过热处理同样可以有效调控显微组织,随着固溶温度从900℃升高至960℃,再经相同工艺时效处理后,原始的α相向β相转变,并在固溶温度为960℃时析出细小的α板条,该过程中强度先升高后降低,塑性和冲击韧性则先降低后升高。960℃轧制得到的TC21钛合金板材经过960℃×2 h/AC+590℃×4 h/AC热处理后,可获得较好的强韧匹配。  相似文献   

10.
研究了真空环境中TA32钛合金板材在温度950℃、应变速率5.32×10^-4~2.08×10^-2 s^-1条件下的超塑性变形行为。结果表明,在不同应变速率条件下,合金的流变应力曲线特征和显微组织演变显著不同。在应变速率较低(5.32×10^-4~3.33×10^-3 s^-1)条件下,拉伸真应力-真应变曲线呈传统超塑变形的稳态流动特征,变形后的合金中初生α相晶粒尺寸较大;在高应变速率(8.31×10^-3 s^-1~2.08×10^-2 s^-1)条件下,拉伸真应力-真应变曲线中流变应力增大到峰值后快速单调递减直至试样断裂,合金变形过程中初生α相发生动态再结晶,晶粒尺寸较低应变速率条件下显著细化。950℃时,TA32钛合金板材均具有超塑性变形能力,超塑性延伸率在145%~519%之间;当应变速率为5.32×10^-4 s^-1时,具有最佳的超塑性,拉伸延伸率可达519%。断裂区形貌分析发现,TA32钛合金板材的超塑性断裂模式为空洞聚集-连接-长大型断裂。  相似文献   

11.
采用盐浴加热循环淬火和高频感应加热淬火对T10A钢进行组织超细化预处理,然后在恒温压缩变形条件下进行超塑性研究。试验表明,在710~770℃、初始应变速率10^-4~10^-3s^-1的变形条件下,该钢的σ-ε曲线具有明显的超塑流变特征,稳态流变应力仅40MPa左右,应变速率敏感性指数可达0.5,变形激活能为183~194kJ/mol,与α—Fe晶界自扩散激活能接近。高频淬火较循环淬火有更好的组织细化效果,因而高频淬火预处理后的超塑性流变特征更明显。本试验为该钢的超塑成形和超塑性固态焊接提供了工艺和理论分析依据。  相似文献   

12.
对热等静压法制备的 Ti-45Al-7Nb-0.3W 合金进行 1 270 ℃热轧,得到合金板材,利用扫描电镜(SEM)观察板材的显微组织。对合金板材进行 950 ℃、初始应变速率为 1×10-4 s-1的高温拉伸实验,根据拉伸应力-应变曲线与拉伸性能,以及拉伸断裂后的显微组织演变与拉伸断口形貌,研究轧制变形合金板材的超塑性变形行为。结果表明:热等静压态合金经热轧后,由近 γ 组织转变为双态组织,并随轧制变形量增加,热轧板材的平均晶粒尺寸减小,伸长率增加。当变形量为 61%时,平均晶粒尺寸最小,为 9.8 μm,板材伸长率最大,达到 367.5%,抗拉强度为 131 MPa。继续增加轧制变形量时,板材晶粒长大,伸长率降低。板材在超塑性变形过程中,α2/γ 层片晶团旋转分解,并在其周围产生大量动态再结晶晶粒。板材的超塑性变形机制为晶界滑移与动态再结晶。  相似文献   

13.
TA7钛合金可被用于制造飞机蒙皮、喷气发动机焊接轮环等中等强度的焊接结构件,但由于存在成形塑性差、易开裂、成品率低等问题,TA7钛合金板材的加工难度较大。为此,针对TA7钛合金板材的生产工艺进行了探索性实验,对比了3种不同制备工艺对TA7钛合金板材开裂情况、显微组织及力学性能的影响。结果表明:开坯轧制在低温区域进行,一火轧制后板材表面开裂明显,成品板材晶粒细小,但组织均匀性不高;开坯轧制在相变点附近的高温区域进行,一火轧制后板材开裂程度明显改善,成品板材晶粒有所长大,但组织均匀性依旧较差;开坯轧制在低温区域进行,且后期采用换向轧制得到的板材表现出最优的综合性能。此外,3种工艺制备的TA7钛合金成品板材的室温力学性能相差不大。  相似文献   

14.
《铝加工》2021,(5)
通过拉伸试验机、金相显微镜、扫描电镜等设备对不同轧制温度下制备的铝锂合金厚板的拉伸性能、金相组织以及断口形貌进行了系统研究。结果表明:轧制温度对固溶时效处理至T84状态板材的高向拉伸性能产生很大影响,但对纵向、纵横向的拉伸性能影响不大。随着轧制温度降低,板材的高向延伸率增大。轧制温度不同,轧制完毕后板材的显微组织也有很大差异,500℃温度下主要为二次析出的"魏氏体",450℃以及400℃下则是轧制碎化的初始"魏氏体"组织。这些组织会"遗传"至固溶处理后的组织中,从而影响板材的拉伸性能。  相似文献   

15.
《钛工业进展》2018,35(5):15-19
通过电子万能试验机对具有粗大晶粒的β型WSTi3515S阻燃钛合金进行了超塑性拉伸试验,分析了热力学参数对超塑性能及力学行为的影响,建立了该合金超塑性本构关系。结果表明:WSTi3515S阻燃钛合金可在较宽的温度范围及应变速率区间内(800~920℃,0. 000 5~0. 01 s~(-1))实现超塑性;且在高温低应变速率条件下超塑性能良好,最大延伸率可达556%。与细晶超塑性不同,WSTi3515S合金在超塑性拉伸过程中,稳态变形阶段很短甚至不出现,变形主要集中在准稳态变形阶段,且准稳态变形阶段越长,获得延伸率越大。基于Arrhenius方程建立的本构方程精度不高,而由逐步回归法构建的本构方程误差值基本在5%以内。  相似文献   

16.
任泽  陈旭  董培  连景宝 《钢铁》2019,54(7):68-76
 为了研究热处理工艺对超级13Cr不锈钢组织及拉伸性能的影响,采用了光学显微镜、X射线衍射仪、透射电子显微镜、显微硬度测试及应变速率拉伸等试验方法。结果表明,经过水淬和油淬处理的超级13Cr不锈钢组织及拉伸性能相差不大。但相比于水淬,采用油淬的试样经回火处理后塑性得到更大提升。淬火试样经回火处理后,组织变为回火索氏体。随着回火温度升高,材料的塑性先增加后减小,硬度与强度变化则相反。620 ℃回火试样含有逆变奥氏体,强度塑性组合较好。二次回火能够增加超级13Cr不锈钢中逆变奥氏体含量,但塑性变化不明显,强度下降较大。  相似文献   

17.
研究了两类锻造工艺对航天用TCA钛合金异形锻件的显微组织及拉伸性能的影响。其中Ⅰ类锻造工艺中第1火及第2火加热温度均在β单相区,Ⅱ类锻造工艺第1火加热温度在β相单区而第2火加热温度在(α+β)两相高温区。实验结果表明:Ⅰ类锻造工艺下最终得到具有粗大晶粒的片层组织,该类型组织强度及塑性均较低,不能满足指标要求;采用Ⅱ类锻造工艺即第2火加热温度在高温两相区且采用大锻造比可以获得条状α和细小等轴α构成的细小的混合组织,该组织具有较好的拉伸性能,满足指标要求。锻造时采用换向拔长镦粗的方式能保证异形锻件的宏观组织均匀。  相似文献   

18.
文章对Ti70钛合金进行了不同轧制工艺条件下的轧制试验,并结合后续的退火试验,对不同轧制工艺以及热处理工艺对板材的微观组织、力学性能的影响进行了表征分析。轧制工艺条件主要包括火次加热温度、单道次变形量、成品热处理温度。试验结果表明适当降低成品火次轧制温度,在较低温度下发生了较大变形,畸变能大、形核点多,因而随后退火后再结晶更加充分,组织更细小、均匀,α相等轴化程度更高,能够有效提高板材强度约30 MPa。同时采用700℃热处理时,板材强度和塑性匹配较好。  相似文献   

19.
三、钛及钛合金板材加工工艺的加热参数及轧制工艺多数1.加热温度选择钛及钛合金是具有相变的稀有金属,板坯加热温度选择必须考虑高温β相区和低温α相区的工艺塑性,变形抗力及高温时有害气体污染所形成的吸气层对轧件表面塑性的影响.β相区的工艺塑性比α相区工艺塑性好,变形抗力低,但加热温度高使吸气层深度增加,在不均匀变形的作用下,表面会产生严重的裂纹,而且β相区抗氧化能力差,易使晶粒粗大,产品性能恶化的危险.因此,对薄板轧制加热温度不宜过高,对于不同牌号的钛合金板材应区别对待,合理选择.  相似文献   

20.
研究了2种不同工艺对SP700钛合金薄板的超塑拉伸性能的影响,并测试了SP700钛合金薄板可达到的最大超塑性能.结果 表明:采用最大m值超塑变形拉伸试验法,在775℃可得到SP700钛合金薄板试样的最佳超塑性能,超塑性可以达到3000%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号