首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyetherols with 1,3‐pyrimidine ring including both oxyethylene and oxypropylene groups were obtained in reactions of 6‐aminouracil with ethylene carbonate and propylene oxide. The structure of the products was analyzed by spectral methods. Some physical properties of polyetherols were investigated. The polyetherols were used as polyol components to obtain polyurethane foams. Some properties of the foams such as apparent density, absorption of water, linear dimensions stability, thermal resistance, and compression strength were investigated. The foams obtained show an improved thermal stability. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
The cellular structure, physical properties, and structure–property relationships of novel open‐cell polyolefin foams produced by compression molding and based on blends of an ethylene/vinyl acetate copolymer and a low‐density polyethylene have been studied and compared with those of closed‐cell polyolefin foams of similar chemical compositions and densities and with those of open‐cell polyurethane foams. Properties such as the elastic modulus, collapse stress, energy absorbed in mechanical tests, thermal expansion, dynamic mechanical response, and acoustic absorption have been measured. The experimental results show that the cellular structure of the analyzed materials has interconnected cells due to the presence of large and small holes in the cell walls, and this structure is clearly different from the typical structure of open‐cell polyurethane foams. The open‐cell polyolefin foams under study, in comparison with closed‐cell foams of similar densities and chemical compositions, are good acoustic absorbers; they have a significant loss factor and lower compressive strength and thermal stability. The physical reasons for this macroscopic behavior are analyzed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
In this study, rigid polyurethane foams that contain up to 5.0 wt % fly ash (FA) being a by‐product of thermal power stations and being cheap source were successfully produced using a polyurethane injection machine. The effects of FA content on the thermal conductivity, compressive strength, and flammability were investigated. The morphology of the cell was observed under a special microscope. The incorporation of FA in rigid polyurethane foams may dramatically decrease production costs and reduce environmental pollution. In addition, the effects of intumescent flame retardant composed of ammonium polyphosphate and pentaerythritol were examined in pure rigid polyurethane foams and FA‐rigid polyurethane foams. It was found that 5.0 and 7.5 wt % intumescent flame retardant loadings enhanced the thermal stability and improved the flammability resistance of the foams. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
This work presents conditions and method for obtaining foamed melamine–formaldehyde–butanone (Mel‐F‐MEK) materials of improved thermal stability. They were obtained from melamine solution in reactive solvents based on ethyl methyl ketone and 4,4′‐diphenylmethane diisocyanate. Some properties of obtained polyurethane foams were examined, e.g., apparent density, water absorption, dimensional stability, thermal conductivity, flammability, as well as static and dynamic thermal stability and compressive strength. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
Polyurethane foams were prepared from the liquefied cornstalk polyol, which was obtained by the liquefaction of cornstalk in the presence of polyhydric alcohols using sulfuric acid as catalyst. The advisable liquefaction reaction conditions were selected by investigating their influences on the properties of liquefied cornstalk polyol, taking account of the requirement for the preparation of appropriate polyurethane foams. The influences of the contents of catalysts, water, surfactant, and isocyanate on the properties of polyurethane foams were also discussed, and feasible formulations for preparing cornstalk‐based polyurethane foams were proposed. The results indicated that the foams prepared from such liquefied cornstalk polyol exhibited excellent mechanical properties and thermal properties, and could be used as heat‐insulating materials. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Phenolic foams reinforced with pristine and functionalized multiwalled carbon nanotubes (MWCNTs) were fabricated to develop fire‐resistant materials with improved mechanical properties. The influences of the contents of carboxyl multi‐walled carbon nanotubes (MWCNTs‐COOH) and of MWCNTs types on the compressive properties of the composite foams were investigated. The microstructure and detailed failure behavior of MWCNTs/phenolic composite foams were studied using scanning electron microscopy (SEM) and in situ quasistatic compression inside SEM, respectively. In addition, thermal performances were evaluated by thermogravimetric analysis (TGA) and vertical burning method. It is found that as heterogeneous nucleation agents, MWCNTs increase cell density and decrease cell size of the produced foams, and that as reinforcements located in cell walls, MWCNTs impart high strength and stiffness to brittle foams. Moreover, MWCNTs reinforced foams have higher thermal stability than raw foams and exhibit similar excellent resistance to flame, confirming the effectiveness of MWCNTs as stabilizers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1479–1488, 2013  相似文献   

7.
A series of thermal insulation, acoustic absorption isocyanate‐based lightweight polyimide (PI) foams with 4,4′‐diaminodiphenyl ether (ODA) units were prepared from polyaryl polymethylene isocyanate (PAPI) and the esterification solution derived from pyromellitic dianhydride (PMDA) and ODA. The structures and properties of the PI foams prepared with different molar ratio of ODA/PMDA were investigated in detail. The results show that the ODA units have great influence on the foam properties. With the increase of the ODA units, the density decreases firstly and then increases. When the molar ratio of ODA/PMDA is 3/10, the foam reaches the minimum density (13.7 kg/m3). Moreover, with increasing the ODA units, the acoustic absorption properties increase firstly and then decrease owing to the variation of the average cell diameter of the PI foams. All PI foams show excellent thermal stability, and the 5% and 10% weight loss temperature are in the range of 250–270 °C and 295–310 °C, respectively. In addition, the PI foams present low thermal conductivity and thermal diffusivity. Furthermore, the mechanical property was also evaluated and the compressive strength of the PI foams is in the range of 33.0–45.7 kPa. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46029.  相似文献   

8.
A series of epoxy resin–modified polyisocyanurate (EP‐PIR) foams with oxazolidone (OX) rings and isocyanurate (IS) rings have been successfully prepared by the reaction of polymethylene polyphenyl isocyanate (PAPI) and diglycidyl ether of bisphenol‐A (DGEBA). Fourier transform infrared spectroscopy and differential scanning calorimetry are performed to investigate the influence of curing temperature on the chemical structure of EP‐PIR foams. The results indicate that low temperature is beneficial to the formation of the IS ring, and high temperature is in favor of the OX ring. The influence of the mole ratio of [PAPI]/[DGEBA] on the mechanical properties and thermal stability has also been studied. With the increase of [PAPI]/[DGEBA], the specific compressive strength shows a maximum of 0.0135 ± 0.0003 MPa m3/kg. The optimized mole ratio of [PAPI]/[DGEBA] is around 2.5 to reach the better mechanical and thermal properties, and the glass‐transition temperature is as high as 323.5°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43085.  相似文献   

9.
The work aimed at synthesis of hydroxypropoxy compounds containing oxalamidoester group from oxamic acid (OA) and propylene carbonate (PC) substrates. The thermal stability of obtained products was tested to estimate their usefulness for formation of polyurethane foams. The influence of initial molar ratio of reagents, amount of catalyst and temperature of reaction between OA and PC on structure of product was studied. The Matrix‐Assisted Laser Desorption Ionization Time of Flight (MALDI ToF) analysis of products evidenced that in the conditions used the formation of hydroxypropoxy derivatives of OA was accompanied by homocondensation of OA, which became minor process in presence of excess of PC. The physicochemical and thermal properties of products were studied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
The use of renewable resources (mainly carbohydrates) in rigid polyurethane foam has been known to offer several advantages, such as increased strength, improved flame resistance, and enhanced biodegradability. Less attention has been directed to inexpensive protein‐based materials, such as defatted soy flour. The objectives of this study were to develop water‐blown rigid polyurethane foams, containing defatted soy flour, that have acceptable or improved physical properties which also lower the cost of the foam formulation and to compare the properties of developed foams extended with three kinds of commercial soy flour. Water‐blown low‐density rigid polyurethane foams were prepared with poly(ether polyol)s, polymeric isocyanates, defatted soy flour, water, a catalyst mixture, and a surfactant. Soy flour and the initial water content were varied from 0 to 40% and from 4.5 to 5.5% of the poly(ether polyol) content, respectively. A standard laboratory mixing procedure was followed for making foams using a high‐speed industrial mixer. After mixing, the mixture was poured into boxes and allowed to rise at ambient conditions. Foams were removed from boxes after 1 h and cured at room temperature for 24 h before measurement of the thermal conductivity and for 1 week before other property tests. Foam properties were determined according to ASTM procedures. Measurement of the physical properties (compressive strength, modulus, thermal conductivity, and dimensional stability under thermal and humid aging) of these foams showed that the addition of 10–20% of three kinds of soy flour imparted water‐blown rigid polyurethane foams with similar or improved strength, modulus, insulation, and dimensional stability. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 10–19, 2001  相似文献   

11.
The effects of liquid‐type additives on the morphology, thermal conductivity, and mechanical strength of polyurethane (PUR) foams were investigated. The PUR foams synthesized with perfluoroalkane showed a smaller average cell diameter and a lower thermal conductivity than PUR foams prepared with propylenecarbonate or acetone. The average cell diameter of the PUR foams decreased from 228 to 155 μm and the thermal conductivity decreased from 0.0227 to 0.0196 kcal/mh °C when the perfluoroalkane content was 0.0 to 2.0 php (parts per hundred polyol by weight). The perfluoroalkane likely acted as a nucleating agent during the formation of the PUR foams. The addition of perfluoroalkane induced the smaller cells size of the PUR foams probably due to lower surface tension of the polyol and perfluoroalkane mixture, resulting in high nucleation rate. The smaller cell size appears to be the main reason for the improvement in the thermal insulating and the mechanical properties of these PUR foams. The compressive strength of the PUR foams prepared with perfluoroalkane was higher than the PUR foams prepared with the propylenecarbonate and acetone. Based on the morphology, thermal conductivity, and compressive strength, it is suggested that the perfluoroalkane is an efficient liquid‐type additive for the improving the thermal insulation of PUR foams. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43557.  相似文献   

12.
Microcapsules containing paraffin and diethyl ethylphosphonate (DEEP) flame retardant with uncrosslinked and crosslinked poly (methacrylic acid‐co‐ethyl methacrylate) (P(MAA‐co‐EMA)) shell were fabricated by suspension‐like polymerization. The surface morphologies of the microencapsulated phase change materials (microPCMs) were studied by scanning electron microscopy. The thermal properties and thermal stabilities of the microPCMs were investigated by differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The flame retarding performances of the microcapsule‐treated foams were calculated by using an oxygen index instrument. The DSC results showed that the crosslinking of the polymer shell led to an increase in the melting enthalpies of the microcapsule by more than 15%. The crosslinked P(MAA‐co‐EMA) microcapsules with DEEP and without DEEP have melting enthalpies of 67.2 and 102.9 J/g, respectively. The TGA results indicated that the thermal resistant temperature of the crosslinked microcapsules with DEEP was up to 171°C, which was higher than that of its uncrosslinked counterpart by ~20°C. The incorporation of DEEP into the microPCM increased the limiting oxygen index value of the microcapsule‐treated foams by over 5%. Thermal images showed that both microcapsule‐treated foams with and without DEEP possessed favorably temperature‐regulated properties. As a result, the microPCMs with paraffin and DEEP as core and P(MAA‐co‐EMA) as shell have good thermal energy storage and thermal regulation potentials, such as thermal‐regulated foams heat insulation materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41880.  相似文献   

13.
A highly thermally and temporally stable, second‐order, nonlinear‐optical polyimide with an X‐type chromophore (2‐{4‐[4,5‐di(4‐nitrophenyl)imidazolyl]phenyl}‐4,5‐di(4‐aminophenyl)imidazole) was synthesized by the Michael addition reaction. The structure of the prepolymer was characterized with Fourier transform infrared (FTIR). Its thermal stability and curing behavior were studied with differential scanning calorimetry, thermogravimetric analysis, and FTIR. After the curing, the glass‐transition temperature of the polyimide greatly increased. The FTIR results suggested that addition and/or crosslinking reactions were carried out during the thermal curing of the prepolymer. A poling polyimide film was achieved, and the thermal and temporal stability of the poling‐induced orientation were evaluated with a multistep corona‐poling technique at an elevated temperature and with in situ second harmonic generation (SHG) measurements. The temporal orientation of the poled polyimide film was over 1000 h at 150°C; it retained 85% of the initial second‐order, nonlinear‐optical coefficient. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Fifty vegetable oil‐based polyols were characterized in terms of their hydroxyl number and their potential of replacing up to 50% of the petroleum‐based polyol in waterborne rigid polyurethane foam applications was evaluated. Polyurethane foams were prepared by reacting isocyanates with polyols containing 50% of vegetable oil‐based polyols and 50% of petroleum‐based polyol and their thermal conductivity, density, and compressive strength were determined. The vegetable oil‐based polyols included epoxidized soybean oil reacted with acetol, commercial soybean oil polyols (soyoils), polyols derived from epoxidized soybean oil and diglycerides, etc. Most of the foams made with polyols containing 50% of vegetable oil‐based polyols were inferior to foams made from 100% petroleum‐based polyol. However, foams made with polyols containing 50% hydroxy soybean oil, epoxidized soybean oil reacted with acetol, and oxidized epoxidized diglyceride of soybean oil not only had superior thermal conductivity, but also better density and compressive strength properties than had foams made from 100% petroleum polyol. Although the epoxidized soybean oil did not have any hydroxyl functional group to react with isocyanate, when used in 50 : 50 blend with the petroleum‐based polyol the resulting polyurethane foams had density versus compressive properties similar to polyurethane foams made from 100% petroleum‐based polyol. The density and compressive strength of foams were affected by the hydroxyl number of polyols, but the thermal conductivity of foams was not. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
A new type of crosslinked poly (n‐butyl acrylate) (PBA)/silica core‐shell nanocomposite particles was adopted as toughening agent to improve the mechanical properties of phenolic foams. The effects of the nanocomposite particles on the structures and properties of lightweight phenolic foams were investigated. SEM result showed that the addition of a small quantity of the nanocomposite particles can significantly enhance the structural homogeneity of phenolic foams. Thermalgravimetric analysis result suggested that the incorporation of the nanocomposite particles did not affect the thermal stability of the toughened phenolic foams. The flexural strength, compressive strength, and elastic modulus of the phenolic foams increased distinctively after the addition of the nanocomposite particles, the maximum values of which increased by 36.0%, 42.9%, and 32.3%, respectively. In this study, the optimum dosage of the nanocomposite particles is 0.03 phr in the modified phenolic foams. Moreover, the influence on the flammability of phenolic foams by toughening can almost be neglected. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42590.  相似文献   

16.
Two series of flexible polyurethane foams were fabricated by substituting conventional petroleum‐based polyols with increasing amounts of soy‐based polyols (SBP) having different hydroxyl numbers. The mechanical properties of the foams were characterized by stress–strain analysis in the compression mode and DMA in tension mode, the cellular morphology was analyzed by SEM and the microphase‐separation of the foams was noted by SAXS. Our results showed that the cellular morphology and mechanical properties of the flexible foams were affected significantly by the foam fabrication method and SBP hydroxyl numbers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
BACKGROUND: The work reported aimed at obtaining hydroxyalkoxy derivatives containing oxalamidoester groups starting from oxamic acid (OA) substrate. These derivatives were then used for the synthesis of polyurethane foams. RESULTS: The hydroxyalkoxy derivatives were obtained by reaction of OA with 6 to 15 molar excess of ethylene carbonate (1,3‐dioxolane‐2‐one) or propylene carbonate (4‐methyl‐1,3‐dioxolane‐2‐one). The products obtained have good thermal stability and possess suitable physical properties for use as substrates for foamed polyurethanes. CONCLUSION: The rigid polyurethane foams obtained from the hydroxyalkoxy derivatives of OA possess enhanced thermal stability and good mechanical properties in comparison with traditional polyurethane foams. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
An attempt was made to synthesize polyurethane (PU)/organoclay nanocomposite foams with high thermal insulation properties. The organoclay was modified by polymeric 4,4′‐diphenylmethane diisocyanate (PMDI) with a silane coupling agent. The structure of the organoclay‐modified PMDI with the silane coupling agent was determined by Fourier transform infrared spectroscopy and nuclear magnetic resonance. Transmission electron micrographs and wide‐angle X‐ray diffraction patterns showed that the interlayer distance increased for the PU/organoclay nanocomposites with the addition of the silane coupling agent. It was expected that the distance between the organoclay layers would increase and that the organoclay would be dispersed on a nanoscale in the PU matrix because of the organic/inorganic hybrid bond formation between the organoclay and silane coupling agent. Compressive and flexural strengths of the PU/silane coupling agent/organoclay nanocomposite foams were similar to those of the PU/organoclay nanocomposite foams. However, the thermal conductivity appreciably decreased from 0.0250 to 0.0230 W/m h °C in the PU/silane coupling agent/organoclay nanocomposite foams. Scanning electron micrographs showed that the cell size of the PU/silane coupling agent/clay nanocomposite foams also decreased. On the basis of these results, it is suggested that the smaller cell size and lower thermal conductivity of the PU/silane coupling agent/organoclay nanocomposite foams were mainly due to enhanced exfoliation of the organoclay layers by the silane coupling reaction. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
A novel phosphorus‐ and silicon‐containing polyurethane prepolymer (PSPUP) was synthesized by the chemical reaction of phenyl dichlorophosphate with hydroxy‐terminated polydimethylsiloxane (HTPDMS) and subsequently with toluene‐2,4‐diisocyanate. The structure of PSPUP was confirmed by Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance. Afterward, a series of phenolic foams (PF) with different loadings of PSPUP toughening agent were prepared. The apparent density and scanning electron microscopy results showed that the addition of PSPUP can increase the apparent density of phenolic foam. The compressive, impact and friability test results showed that the incorporation of PSPUP into PF dramatically improved the compressive strength, impact strength, and reduced the pulverization ratio, indicating the excellent toughening effect of PSPUP. The limiting oxygen index of PSPUP modified phenolic foams remained a high value and the UL‐94 results showed all samples can pass V0 rating, indicating the modified foams still had good flame retardance. The thermal properties of the foams were investigated by thermogravimetric analysis under air atmosphere. Moreover, the thermal degradation behaviors of the PF and PSPUP/PF were investigated by real‐time Fourier transform infrared spectra. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
In this study, glass bubble (GB) is added to polyurethane (PU) foams at different weight ratios—0, 0.25, 0.5, 0.75, and 1 wt% —to investigate the changes in the mechanical and thermal properties of the foam. By conducting several tests and measurements, the density, cell morphology, compressive strength, and thermal conductivity of the foam are studied. In particular, the effect of GB additives is examined by conducting compression tests at various temperatures (−163, −100, −40, and 20°C). Scanning electron microscopy and X-ray microscope reveal that the foams exhibit higher stability below 0.5 wt%, which improves the thermal performance. On the other hand, the compressive strength of the foams increases for all weight ratios of GB, and it increases sharply at 0.75 wt%. In addition, the chemical interactions and the dispersion of additives in the PU matrix are investigated through Fourier transform infrared and X-ray diffractions analysis. It is found that the synthesis of PU foams with GB nanoparticles is an efficient method for improving the mechanical properties and insulation performance of the foam for LNG insulation technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号