首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thin‐film directed self‐assembly of molecular building blocks into oriented nanostructure arrays enables next‐generation lithography at the sub‐5 nm scale. Currently, the fabrication of inorganic arrays from molecular building blocks is restricted by the limited long‐range order and orientation of the materials, as well as suitable methodologies for creating lithographic templates at sub‐5 nm dimensions. In recent years, higher‐order liquid crystals have emerged as functional thin films for organic electronics, nanoporous membranes, and templated synthesis, which provide opportunities for their use as lithographic templates. By choosing examples from these fields, recent progress toward the design of molecular building blocks is highlighted, with an emphasis on liquid crystals, to access sub‐5 nm features, their directed self‐assembly into oriented thin films, and, importantly, the fabrication of inorganic arrays. Finally, future challenges regarding sub‐5 nm patterning with liquid crystals are discussed.  相似文献   

2.
3.
4.
5.
6.
Self‐organized nano‐ and microstructures of soft materials are attracting considerable attention because most of them are stimuli‐responsive due to their soft nature. In this regard, topological defects in liquid crystals (LCs) are promising not only for self‐assembling colloids and molecules but also for electro‐optical applications such as optical vortex generation. However, there are currently few bottom‐up methods for patterning a large number of defects periodically over a large area. It would be highly desirable to develop more effective techniques for high‐throughput and low‐cost fabrication. Here, a micropixelated LC structure consisting of a square array of topological defects is stabilized by photopolymerization. A polymer network is formed on the structure of a self‐organized template of a nematic liquid crystal (NLC), and this in turn imprints other nonpolymerizable NLC molecules, which maintains their responses to electric field and temperature. Photocuring of specific local regions is used to create a designable template for the reproducible self‐organization of defects. Moreover, a highly diluted polymer network (≈0.1 wt% monomer) exhibits instant on–off switching of the patterns. Beyond the mere stabilization of patterns, these results demonstrate that the incorporation of self‐organized NLC patterns offers some unique and unconventional applications for anisotropic polymer networks.  相似文献   

7.
8.
9.
10.
Amphiphilic lipids aggregate in aqueous solution into a variety of structural arrangements. Among the plethora of ordered structures that have been reported, many have also been observed in nature. In addition, due to their unique morphologies, the hydrophilic and hydrophobic domains, very high internal interfacial surface area, and the multitude of possible order?order transitions depending on environmental changes, very promising applications have been developed for these systems in recent years. These include crystallization in inverse bicontinuous cubic phases for membrane protein structure determination, generation of advanced materials, sustained release of bioactive molecules, and control of chemical reactions. The outstanding diverse functionalities of lyotropic liquid crystalline phases found in nature and industry are closely related to the topology, including how their nanoscopic domains are organized. This leads to notable examples of correlation between structure and macroscopic properties, which is itself central to the performance of materials in general. The physical origin of the formation of the known classes of lipidic lyotropic liquid crystalline phases, their structure, and their occurrence in nature are described, and their application in materials science and engineering, biology, medical, and pharmaceutical products, and food science and technology are exemplified.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Hollow carbon–silica nanospheres that exhibit angle‐independent structural color with high saturation and minimal absorption are made. Through scattering calculations, it is shown that the structural color arises from Mie resonances that are tuned precisely by varying the thickness of the shells. Since the color does not depend on the spatial arrangement of the particles, the coloration is angle independent and vibrant in powders and liquid suspensions. These properties make hollow carbon–silica nanospheres ideal for applications, and their potential in making flexible, angle‐independent films and 3D printed films is explored.  相似文献   

18.
19.
20.
It is demonstrated that halogen bonding can be used to construct low‐molecular‐weight supramolecular complexes with unique light‐responsive properties. In particular, halogen bonding drives the formation of a photoresponsive liquid‐crystalline complex between a non‐mesogenic halogen bond‐donor molecule incorporating an azo group, and a non‐mesogenic alkoxystilbazole moiety, acting as a halogen bond‐acceptor. Upon irradiation with polarized light, the complex exhibits a high degree of photoinduced anisotropy (order parameter of molecular alignment > 0.5). Moreover, efficient photoinduced surface‐relief‐grating (SRG) formation occurs upon irradiation with a light interference pattern, with a surface‐modulation depth 2.4 times the initial film thickness. This is the first report on a halogen‐bonded photoresponsive low‐molecular‐weight complex, which furthermore combines a high degree of photoalignment and extremely efficient SRG formation in a unique way. This study highlights the potential of halogen bonding as a new tool for the rational design of high‐performance photoresponsive suprastructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号