首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the effect on the curing behavior, activation energy (E a) of the curing reaction, crystalline structure, crosslinking, and free formaldehyde content of the addition of the following scavengers in urea-formaldehyde (UF) resins: medium density fiber board flour, rice husk flour, silica powder, and tannin powder. The scavenger content was 3 and 7?wt% of the UF resin solid content. The curing behavior of UF resins was monitored by differential scanning calorimetry, thermogravimetric analysis, and X-ray crystallography. The curing E a was correlated to the free formaldehyde content of the scavenger containing UF resins. The thermal stability of the UF resins increased but the curing E a decreased with increasing scavenger content. After curing, the crystallinity of the UF resins decreased in the presence of scavengers. The unreacted free formaldehyde content was reduced in the tannin powder containing UF resins. The degree of crosslinking affects the formaldehyde emission from wood panels bonded with UF resin. This is especially true for wood panels in service for long periods of time and exposed to high humidity conditions. Once the free formaldehyde which influences considerably the emission has disappeared, the presence of the –CH2– groups then becomes important. Hence, an increased resin crosslinking indicates a higher concentration of –CH2– groups present, which may hydrolyze and emit formaldehyde slowly over time.  相似文献   

2.
Differential scanning calorimetry was applied to investigate the curing behavior of urea–formaldehyde (UF) resin as affected by the catalyst content and several less desirable wood materials (e.g., wood barks, tops, and commercial thinnings). The results indicate that the reaction enthalpy of UF resin increased with increasing catalyst content. The activation energy and peak temperature of the curing UF resin generally decreased with increasing catalyst content at lower levels of catalyst content. However, with further increases in catalyst content, the changes in the activation energy and peak temperature were very limited to nonexistent. The hydrolysis reaction of the cured UF resin occurred during the latter stages of the curing process at both lower level (<0.2%) and higher level (>0.7%) catalyst contents. This indicates that there existed an optimal range of catalyst content for the UF resin. The curing enthalpy of the UF resin decreased with increasing wood raw materials present due to the effect of diffusion induced by the wood materials and the changes in the phase of the curing systems. This suggests that the curing reactions reached a lower final degree of conversion for the wood–resin mixtures than for the UF resin alone. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2027–2032, 2005  相似文献   

3.
We conducted a feasibility study on the pultrusion of a glass‐fiber‐reinforced urea–formaldehyde (UF) composite using a proprietary method. The UF prepolymer synthesized in this study was prepared from blends of UF monomer and a curing agent (NH4Cl).The process feasibility, kinetic analysis, and dynamic mechanical properties of the glass‐fiber‐reinforced UF composites by pultrusion were investigated. From investigations of the long pot life of the UF prepolymer, the high reactivity of the UF prepolymer, and excellent fiber wet‐out, we found that the UF resin showed excellent process feasibility for pultrusion. A kinetic model, dα/dt = A exp(?E/RTm(1 ? α)n, is proposed to describe the curing behavior of a UF resin. Kinetic parameters for the model were obtained from dynamic differential scanning calorimetry scans with a multiple‐regression technique. The dynamic storage modulus of the pultruded‐glass‐fiber‐reinforced UF composites increased with increasing die temperature, filler content and glass‐fiber content and with decreasing pulling rate. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1242–1251, 2002  相似文献   

4.
Amino‐functionalized multiwalled carbon nanotubes (MWCNT‐NH2s) as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA) toughened with amine‐terminated butadiene–acrylonitrile (ATBN). The curing kinetics, glass‐transition temperature (Tg), thermal stability, mechanical properties, and morphology of DGEBA/ATBN/MWCNT‐NH2 nanocomposites were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis, a universal test machine, and scanning electron microscopy. DSC dynamic kinetic studies showed that the addition of MWCNT‐NH2s accelerated the curing reaction of the ATBN‐toughened epoxy resin. DSC results revealed that the Tg of the rubber‐toughened epoxy nanocomposites decreased nearly 10°C with 2 wt % MWCNT‐NH2s. The thermogravimetric results show that the addition of MWCNT‐NH2s enhanced the thermal stability of the ATBN‐toughened epoxy resin. The tensile strength, flexural strength, and flexural modulus of the DGEBA/ATBN/MWCNT‐NH2 nanocomposites increased increasing MWCNT‐NH2 contents, whereas the addition of the MWCNT‐NH2s slightly decreased the elongation at break of the rubber‐toughened epoxy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40472.  相似文献   

5.
The thermal behavior of pre-curing urea–formaldehyde (UF) resin with different solid content was investigated by different scanning calorimetry (DSC), and the activation energies (Ea) in different pre-curing stage of UF resin were also analyzed by Kissinger method. The results indicated that with pre-curing degree increasing, the DSC curves of pre-curing UF resin shifted to lower temperature, and both the onset and peak temperature decreased. The pre-curing process of UF resin included two stages: In the first stage, the Ea and Z value decreased obviously due to the activity of component increased with water evaporation, and then, these two values increased in the second stage due to pre-curing degree increased even partial resin was cured.  相似文献   

6.
As a part of abating the formaldehyde emission (FE) of urea–formaldehyde (UF) resin, this study was conducted to investigate the effects of formaldehyde to urea (F/U) mole ratio on thermal curing behavior of UF resins and properties of PB bonded with them. UF resins synthesized at different F/U mole ratios (i.e., 1.6, 1.4, 1.2, and 1.0) were used for the manufacture of PB. Thermal curing behavior of these UF resins was characterized using differential scanning calorimetry (DSC). As the F/U mole ratio decreases, the gel time, onset and peak temperatures, and heat of reaction (ΔH) increased, while the activation energy (Ea) and rate constant (k) were decreased. The amount of free formaldehyde of UF resin and FE of PB prepared decreased in parallel with decreasing the F/U mole ratio. The internal bond strength, thickness swelling, and water absorption of PB was slightly deteriorated with decreasing the F/U mole ratio of UF resins used. These results indicated that as the F/U mole ratio decreased, the FE of PB was greatly reduced at the expense of the reactivity of UF resin and slight deterioration of performance of PB prepared. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1787–1792, 2006  相似文献   

7.
Lignocellulosic substrates such as wood were found to have a marked modifying influence on a well‐defined region of CHT diagrams during hardening of phenol–formaldehyde (PF) and urea–formaldehyde (UF) polycondensates. This was ascribed to more complex resin phase transitions due to resin/substrate interactions peculiar to these substrates. The chemical and physical mechanisms of the interactions of the resin and substrate causing such CHT diagram modifications are presented and discussed. The Di Benedetto equation describing the glass transition temperature Tg of the system as a function of the resin degree of conversion p has been slightly modified to take into account the modified CHT diagram. The modified CHT diagram can be used to good effect to describe the behavior of polycondensation resins when used as wood adhesives during their curing directly into the wood joint. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 915–925, 1999  相似文献   

8.
Urea–formaldehyde (UF) resins are susceptible to stress rupture and hydrolytic degradation, particularly under cyclic moisture or warm, humid conditions. Modification of UF resins with flexible di- and trifunctional amines reduces this problem. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were used to study the thermal behavior of modified and unmodified adhesives to identify the physical and morphological factors responsible for the improved performance. A UF resin modified by incorporating urea–capped poly(propyleneoxidetriamine) during resin synthesis exhibited a higher cure rate and greater cure exotherm than the unmodified resin. Resins cured with a hexamethylenediamine hydrochloride curing agent had slower cure rates than those cured with NH4Cl. DMA behavior indicated that modified adhesives were more fully cured and had a more homogeneous crosslink density than unmodified adhesives. DMA behavior changed with storage of specimens at 23°C and 50% relative humidity, after previous heating for approximately 20 min at 105°C to 110°C. The initial changes were postulated to occur because of physical aging (increase in density) and continued cure. These were followed by physical breakdown (microcracking) and possibly cure reversion. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
The curing behavior of synthesized phenol–urea–formaldehyde (PUF) resol resins with various formaldehyde/urea/phenol ratios was studied with differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The results indicated that the synthesis parameters, including the urea content, formaldehyde/phenol ratio, and pH value, had a combined effect on the curing behavior. The pH value played an important role in affecting the shape of the DSC curing curves, the activation energy, and the reaction rate constant. Depending on the pH value, one or two peaks could appear in the DSC curve. The activation energy was lower when pH was below 11. The reaction rate constant increased with an increase in the pH value at both low and high temperatures. The urea content and formaldehyde/phenol ratio had no significant influence on the activation energy and rate constant. DMA showed that both the gel point and tan δ peak temperature (Ttanδ) had the lowest values in the mid‐pH range for the PUF resins. A different trend was observed for the phenol–formaldehyde resin without the urea component. Instead, the gel point and Ttanδ decreased monotonically with an increase in the pH value. For the PUF resins, a high urea content or a low formaldehyde/phenol ratio resulted in a high gel point. The effect of the urea content on Ttanδ was bigger than that on the gel point because of the reversible reaction associated with the urea component. Too much formaldehyde could lead to more reversible reactions and a higher Ttanδ value. The effects of the synthesis conditions on the rigidity of the cured network were complex for the PUF resins. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1368–1375, 2005  相似文献   

10.
Liquid crystalline epoxy resin (LC epoxy resin) – p-phenylene di{4-[2-(2,3-epoxypropyl)ethoxy]benzoate} (PEPEB) was synthesized. The mixture of PEPEB with bisphenol-A epoxy resin (BPAER) was cured with a curing agent 4,4-diamino-diphenylmethane (DDM). The curing process and thermal behavior of this system were investigated by differential scanning calorimeter (DSC) and torsional braid analysis (TBA). The morphological structure was measured by polarizing optical microscope (POM) and scanning electron microscope (SEM). The results show that the initial curing temperature Ticu (gel point) of this system is 68.1°C, curing peak temperature T pcu is 102.5°C, and the disposal temperature T fcu is 177.6°C. LC structure was fixed in the cured epoxy resin system. The curing kinetics was investigated by dynamic DSC. Results showed that the curing reaction activation energy of BEPEB/BPAER/DDM system is 22.413 kJ/mol. The impact strength is increased 2.3 times, and temperature of mechanical loss peak is increased to 23°C than the common bisphenol-A epoxy resin, when the weight ratio of BEPEB with BPAER is 6 100.  相似文献   

11.
A series of UF resins and one MUF resin were studied by low‐resolution 1H‐NMR. The mobility of the resin during curing could be followed by measuring the spin‐spin relaxation time (T2) with curing time. The relative curing behavior was similar to that found by traditional gel time measurements. In addition, extra features in the T2 plots with curing time showed at what point the bulk of the condensation reactions took place. The speed of cure was also related to the chemical groups in the liquid resin, and it was found that the linear methylol groups were mainly responsible for the curing speed of the resins. By studying the curing with different hardener levels and glue concentrations it was found that a UF resin is more sensitive to the glue mix concentration than an MUF resin. A cured resin was also studied after curing to investigate postcuring effects. Water seemed to play the biggest role in the postcure, with substantial amounts present immediately after cure, which decreased with curing time and aging. For the low mol ratio resins studied here further curing reactions did not seem to play a major role in the post curing phenomenon. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 754–765, 2000  相似文献   

12.
Curing kinetics and pot life are two vital characteristics for the application of poly(furfuryl alcohol) (PFA) resin because of the complexities both in the resin composition and curing mechanisms involved. However, few reports have provided a complete picture of PFA curing behavior. In this research, the effect of the addition of catalysts on the pot life and curing behavior of a PFA resin were evaluated. A homologous series of dicarboxylic acids [i.e., oxalic acid (OX), succinic acid (SU), and adipic acid (SA)] were used as the catalysts. Rheometric and nonisothermal differential scanning calorimetry (DSC) measurements and headspace gas chromatography/mass spectrometry analysis were carried out at 0, 6, and 24 h after the addition of the catalyst. The relaxation exponent (n), gel stiffness (S), and gel strength (AF) of the prepared compositions were calculated with the Winter and Chambon and Gabriele rheological models. Furthermore, the curing kinetics were evaluated by the fitting of nonisothermal, multiple‐heating‐rate models. The DSC measurements showed a higher curing degree for samples containing OX catalyst compared to their counterparts containing either SU or AD. The rheometric findings supported an increased stiffness, gel strength, and curing development of the resin in the presence of OX compared to samples containing SU or AD. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44009.  相似文献   

13.
The paper investigates the effect of surface modification of fumed nanosilica with (3-aminopropyl)triethoxysilane (APTES) on the kinetics and thermal stability of urea-formaldehyde (UF) resin. In the course of the investigation, nanoparticles were modified with APTES in the ratio 1, 2, 3, 4 and 5 part by weight (PBW) per 100 PBW of SiO2. The parameters of curing kinetics of the resin, the conversion degree and its thermal stability were determined with use of differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The effect of nanosilica silanization on the curing process of resin was evaluated by determining the gel time at 100 °C and the activation energy (Ea) of the cross-linking process, the initial and final temperature of the reaction (Tonset, Tendset), the maximum value of the exothermic peak (Tp), the amount of emitted heat (ΔHTp) and the conversion degree (αTp) that responds to Tp. With the maximum level of silica modification, we have noted a decrease in the reactivity of the resin, which is manifested by a slightly longer gel time of the resin as well as an increase in the value of activation energy of the cross-linking process. It is accompanied by a slight decrease of resin conversion degree αTp. The modification of silica, regardless of the amount of silane inoculated on its surface, results in the increase in the thermal stability of UF resin.  相似文献   

14.
In this work, betaine (trimethyl glycine) and tannin (complex biomolecules of polyphenolic nature) were used as bio-fillers. Urea-formaldehyde (UF) resin with a molar ratio of formaldehyde versus urea (FA/U) of 0.8 was synthesized in situ with tannin and betaine as bio-fillers, to obtain UF resin with reduced free FA content and increased hydrolytic and thermal stability by the principles of sustainability. The samples TUF (with tannin) and BUF (with betaine) were characterized by using X-ray diffraction analysis (XRD), non-isothermal thermogravimetric analysis (TGA), and differential thermal analysis (DTA), supported by data from Fourier Transform Infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The percentage of free FA in modified BUF resin is 0.1%, while the percentage of free FA in tannin-modified resin is 0.8%. The hydrolytic stability of the modified UF resins was determined by measuring the concentration of liberated FA in the modified UF resins, after acid hydrolysis. The modified BUF resin is hydrolytically more stable because the content of released FA is 3.6% compared to the modified TUF resin, where it was 7.4%. Based on the value for T5%, the more thermally stable resin is the modified TUF resin (T5% = 123.1°C), while the value of the T5% for the BUF resin is 83.1°C. This work showed how UF bio-composite with reduced free FA content and increased hydrolytic and thermal stability can be obtained using tannin and betaine as bio-fillers.  相似文献   

15.
The curing characteristics of a brominated epoxy resin/dicyandiamide (DICY) system in the presence of different DICY contents and metal oxides are studied using isothermal differential scanning calorimetry (DSC). From the exotherms obtained, it is found that the reaction heats increase with increasing DICY content and curing temperature because of greater amounts of DICY reacted. The amine–epoxy-related reaction dominates the major curing behavior and the Tg especially at the high curing temperature, while the etherification is more significant at low temperature and conversion and plays an important role in determining the rate of liquid-to-solid transition during the cure. The addition of metal oxides, Fe2O3, and ZnO, results in changes in the initial transition rate, Tg, activation energy, reaction heat, reaction rate, and reaction order. Three fillers respond differently because of a difference in the surface-activated reaction. Regardless of the complex curing mechanisms involved in the specimens, a simple kinetic expression can describe the curing extent at 180°C with good accuracy. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
The liquid crystalline epoxy resin p-phenylene di[4-2-(2,3-epoxypropyl)ethoxy] benzoate (PEPEB) was synthesized. The curing behavior of the liquid crystalline epoxy resin (LCER) with 4,4-diaminodiphenylmethane (DDM) was studied by fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and torsional braid analysis (TBA). Morphology of curing product was observed by polarized optical microscopy (POM) at different temperatures. Nonisothermal curing kinetics of this system were investigated by DSC. Results show that the PEPEB has a smectic liquid crystalline structure, and the melting point, T m, is 119°C, the clearing point is 184°C. The cured-system's gel point, T I , is 83.5°C; cure temperature, T P , is 111.6°C; and the disposal temperature, T f , is 145.8°C; activation energy of curing reaction is 4.84 KJ/mol. Observation by POM shows that with the upgrade of initial curing temperature, the filament structure of this system transferred from anisotropy to isotropy.  相似文献   

17.
The purpose of this study was to investigate the effects of reaction pH conditions on thermal behavior of urea–formaldehyde (UF) resins, for the possible reduction of formaldehyde emission of particleboard bonded with them. Thermal curing properties of UF resins, synthesized at three different reaction pH conditions, such as alkaline (pH 7.5), weak acid (pH 4.5), and strong acid (pH 1.0), were characterized with multiheating rate method of differential scanning calorimetry. As heating rate increased, the onset and peak temperatures increased for all three UF resins. By contrast, the heat of reaction (ΔH) was not much changed with increasing heating rates. The activation energy (Ea) increased as the reaction pH decreased from alkaline to strong acid condition. The formaldehyde emission of particleboard was the lowest for the UF resins prepared under strong acid, whereas it showed the poorest bond strength. These results indicated that thermal curing behavior was related to chemical species, affecting the formaldehyde emission, while the poor bond strength was believed to be related to the molecular mobility of the resin used. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 422–427, 2006  相似文献   

18.
Transition temperatures by thermo-optical analysis (TOA) and by DSC were measured on films of polystyrene (PS), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO resin) and nine homogeneous blends of these polymers. The TOA procedure consists of automatically monitoring light transmission through birefringent scratches in a film during heating at constant rate in a microscope hot stage between crossed (90°) plane polarizers. The TTOA transition temperature, defined as the temperature of birefringence disappearance in the scratches, increased monotonically from 113°C for pure PS to 222°C for pure PPO resin at a 10°/min heating rate. The Tg (DSC) similarly ranged from 99°C to 212°C at a 20°/min heating rate. The TOA technique as described should be a useful addition to thermomechanical studies of transparent polymers and polymer blends.  相似文献   

19.
Three grades of liquid urea-formaldehyde (UF) resin with different formaldehyde emission levels such as super E0 (SE0), E0 and E1 were modified by adding different amounts of microfibrillated cellulose (5 wt% MFC and 95 wt% water) that had been isolated by mechanical disintegration of pulp fibers. Thermal properties of these UF resins were investigated to understand thermal curing and degradation behaviors of the modified UF resins, using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC thermograms showed an exothermic curing reaction, and the curing peak temperature of modified UF resins heavily depended on the emission resin grade with an increasing order from E1, E0 to SE0. The addition of MFC suspension into the UF resins gradually increased curing peak temperature suggesting a decrease in the resin reactivity. TGA results showed three main thermal degradation temperatures for the modified UF resins except the SE0 UF resin, which had four degradation temperatures.  相似文献   

20.
Several phenol-formaldehyde resole resins were prepared with variety in monomers ratio, catalyst type, and content, having different nanoclay levels; then they were cured using various acids in the wide range of concentration. The acid-curing process was studied, considering gel time (tG) and cure time (tC). In addition, the thermal stability was investigated before and after cure for all samples. With increasing F/P ratio, tG, tC and tG-tC decreased and also CC (critical concentration). By using more catalyst in the synthesizing step, the curing was done more rapidly in the order of NaOH, Ba(OH)2 and NH3. Stronger acids having smaller pKa made a more realizable cure. However, the weak boric acid had no curing effect. Nanocomposites had shorter tG and tC, mainly at lower acid concentration. The structure peak of nanoclay shifted to the lower angles in nanocomposites, especially in the cured state. Crosslinked samples had higher degradation temperature (TD) and lower weight decrease (Δw) related to the primary resoles. For uncured resins, thermal stability increased with decreasing of F/P ratio, and the inverse effect was found for the cured resins. Resins cured with HCL had higher TD and lower Δw. However, at 30% concentration the sample cured by H2SO4 was more stable. With increasing catalyst amount and reactivity, TD increased and Δw decreased. In all acid concentrations, at the presence of nanoclay the better thermal resistance was observed. TD increased and Δw decreased as the nanoclay level increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号