首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of cardo based asymmetric polyimides containing bulky rigid naphthalimide and phthalimide groups were prepared from asymmetric monomer bishaloimide and bisphenols by solution polycondensation. Bishalo(naphthalimide‐phthalimide) monomers containing different terminal leaving groups (Cl, F, NO2) were synthesized, and the reactivity difference of these monomers was compared for the successful synthesis of polyimides. The inherent viscosities of the polyimides were in the range 0.51 ? 0.60 dL g?1 in N ‐methyl‐2‐pyrrolidone at 30 °C. These polyimides demonstrated good organosolubility and mechanical properties with tensile strengths of 93 ? 120 MPa, tensile moduli of 3.5 ? 5.3 GPa and elongations at break of 2.8% ? 4.3%. The polyimides showed high glass transition temperatures (T g) ranging from 330 to 363 °C. The 10% weight loss (T 10%) of asymmetric polyimides reached 436 ? 500 °C in nitrogen and 417 ? 476 °C in air. The water uptake of the polyimides was in the range 0.35% ? 0.72%. © 2017 Society of Chemical Industry  相似文献   

2.
The possibility of sorption of technetium‐99 in the form of pertechnetate anion (TcO4?) and the sorption kinetics for removing TcO4? from aqueous solution by chelating polymers based on glycidyl methacrylate (GMA) were investigated. Two samples of macroporous crosslinked poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) (PGME), with different amount of the crosslinker (ethylene glycol dimethacrylate, EGDMA), were synthesized by suspension copolymerization and functionalized with diethylene triamine (deta). We propose that nonspecific sorption of pertechnetate anion via electrostatic interactions takes place at the protonated amino groups of macroporous crosslinked copolymer. The results of batch experiments performed at pH 1–14 showed fast sorption kinetics for removing TcO4? by amino‐functionalized PGME‐deta in a wide range of pH, that is, from 1.0 to 9.0. Almost complete removal of TcO4? (91–98%) was reached within 180 min in the stated pH range (1.0–9.0), with the sorption half‐times of under 25 min. The partitioning coefficients of linear adsorption isotherms, with 180‐min equilibrium time, reach the high values of 2130 mL g?1 and 1698 mL g?1 for the two samples of synthesized PGME‐deta. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
The solution polymerization of acrylamide (AM) on cationic guar gum (CGG) under nitrogen atmosphere using ceric ammonium sulfate (CAS) as the initiator has been realized. The effects of monomer concentration and reaction temperature on grafting conversion, grafting ratio, and grafting efficiency (GE) have been studied. The optimal conditions such as 1.3 mol of AM monomer and 2.2 × 10?4 mol of CAS have been adopted to produce grafted copolymer (CGG1‐g‐PAM) of high GE of more than 95% at 10°C. The rates of polymerization (Rp) and rates of graft copolymerization (Rg) are enhanced with increase in temperature (<35°C).The Rp is enhanced from 0.43 × 10?4 mol L?1 s?1 for GG‐g‐PAM to 2.53 × 10?4 mol L?1 s?1 for CGG1‐g‐PAM (CGG1, degree of substitute (DS) = 0.007), and Rg from 0.42 × 10?4 to 2.00 × 10?4 mol L?1 s?1 at 10°C. The apparent activation energy is decreased from 32.27 kJ mol?1 for GG‐g‐PAM to 8.09 kJ mol?1 for CGG1‐g‐PAM, which indicates CGG has higher reactivity than unmodified GG ranging from 10 to 50°C. Increase of DS of CGG will lead to slow improvement of the polymerization rates and a hypothetical mechanism is put forward. The grafted copolymer has been characterized by infrared spectroscopy, thermal analysis, and scanning electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3715–3722, 2007  相似文献   

4.
Copolymerizations of butadiene (Bd) with styrene (St) were carried out with catalytic systems composed of a rare‐earth compound, Mg(n‐Bu)2 (di‐n‐butyl magnesium) and halohydrocarbon. Of all the rare earth catalysts examined, Nd(P507)3–Mg(n‐Bu)2–CHCl3 showed a high activity in the copolymerization under certain conditions: [Bd] = [St] = 1.8 mol l?1, [Nd] = 6.0 × 10?3 mol l?1, Mg/Nd = 10, Cl/Nd = 10 (molar ratio), ageing for 2 h, copolymerization at 50 °C for 6–20 h. The copolymer of butadiene and styrene obtained has a relatively high styrene content (10–30 mol%), cis‐1,4 content in butadiene unit (85–90%), and molecular weight ([η] = 0.8–1 dL g?1). Monomer reactivity ratios were estimated to be rBd = 36 and rSt = 0.36 in the copolymerization. © 2002 Society of Chemical Industry  相似文献   

5.
π‐Conjugated poly(3‐nitropyridine‐2,5‐diyl) ( PPy‐3‐NO2 ), poly(3,3′‐dinitro‐2,2′‐bipyridine‐5,5′‐diyl) ( PBpy‐3,3′‐diNO2 ), and a poly(arylene ethynylene) type polymer consisting of a 3,3′‐dinitro‐2,2′‐bipyridine unit ( PAE‐1 ) were synthesized by Cu‐promoted Ullmann coupling reaction and Pd‐catalyzed coupling reaction. PPy‐3‐NO2 and PAE‐1 were soluble in organic solvents such as DMSO, DMF, and chloroform, and gel permeation chromatography analysis showed a number average molecular weight (Mn) of 9,300 and 12,300, respectively. PPy‐3‐NO2 gave intrinsic viscosity, [η], of 0.53 dL g?1 in DMF. PBpy‐3,3′‐diNO2 had somewhat lower solubility. The polymers exhibited a UV–vis peak at about 430 nm. PPy‐NO2 received electrochemical reduction at ?1.5 V versus Ag+/Ag in acetonitrile, and gave an electrochemical redox cycle in a range from 0 to ?1.1 V versus Ag+/Ag in an aqueous solution. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1763–1767, 2006  相似文献   

6.
A combination of reduced graphene oxide (rGO) nanosheets grafted with regioregular poly(3‐hexylthiophene) (P3HT) (rGO‐g‐P3HT) and P3HT‐b‐polystyrene (PS) block copolymers was utilized to modify the morphology of P3HT:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) active layers in photovoltaic devices. Efficiencies greater than 6% were acquired after a mild thermal annealing. To this end, the assembling of P3HT homopolymers and P3HT‐b‐PS block copolymers onto rGO‐g‐P3HT nanosheets was investigated, showing that the copolymers were assembled from the P3HT side onto the rGO‐g‐P3HT nanosheets. Assembling of P3HT‐b‐PS block copolymers onto the rGO‐g‐P3HT nanosheets developed the net hole and electron highways for charge transport, thereby in addition to photoluminescence quenching the charge mobility (μh and μe) values increased considerably. The best charge mobilities were acquired for the P3HT50000:PC71BM:rGO‐g‐P3HT50000:P3HT7000b‐PS1000 system (μh = 1.9 × 10?5 cm2 V–1 s–1 and μe = 0.8 × 10?4 cm2 V–1 s–1). Thermal annealing conducted at 120 °C also further increased the hole and electron mobilities to 9.8 × 10?4 and 2.7 × 10?3 cm2 V–1 s–1, respectively. The thermal annealing acted as a driving force for better assembly of the P3HT‐b‐PS copolymers onto the rGO‐g‐P3HT nanosheets. This phenomenon improved the short circuit current density, fill factor, open circuit voltage and power conversion efficiency parameters from 11.13 mA cm?2, 0.63 V, 62% and 4.35% to 12.98 mA cm?2, 0.69 V, 68% and 6.09%, respectively. © 2019 Society of Chemical Industry  相似文献   

7.
Crosslinked hydroxyl‐conductive copolymer/silica composite membranes based on addition‐type polynorbornene, poly(dodoxymethylene norbornene‐co‐norbornene‐3‐(trimethylpropyl ammonium)‐functionalized silica (QP(DNB/NB‐SiO2), were prepared by a sol–gel method. Copolymer composite membranes with different degree of quaternary ammonium functional silica, designated as QP(DNB/NB‐SiO2‐X) (X = 5, 10, 15 and 25 wt%, respectively), displayed good dimensional stabilities with low in‐plane swelling rate of 1.32–3.7%, good mechanical properties with high elastic modulus of 605.4–756.8 MPa and high tensile strength of 13.2–20 Mpa. The achieved copolymer composite membranes could self‐assemble into a microphase‐separated morphology with randomly oriented long‐range aliphatic chain/cylinder ionic channels that were imbedded in the hydrophobic PNB matrix. Among these membranes, the QP(DNB/NB‐SiO2‐25) showed the parameter with ionic conductivity of 9.33 × 10?3S cm?1, methanol permeability of 2.89 × 10?7cm2 s?1, and ion‐exchange capacity(IEC) of 1.19 × 10?3 mol g?1. A current density of 82.3mA cm?2, the open circuit voltage of 0.65 V and a peek power density of 32 mW cm?2 were obtained. POLYM. ENG. SCI., 58:13–21, 2018. © 2017 Society of Plastics Engineers  相似文献   

8.
Anion‐exchange organic‐inorganic hybrid membranes were prepared through sol‐gel reaction and UV/thermal curing of positively charged alkoxysilane and the alkoxysilane containing acrylate or epoxy groups. Properties of prepared hybrid membranes were varied by control of the molar ratio of the precursors. It was shown that the thermal degradation temperatures (Td) of the membranes were in the range of 212–226°C, water uptakes in the range of 9.6–14.6% and IEC values in the range of 0.9–1.6 mmol g?1. The hybrid membranes show high permeability to anions, as reflected by the high static transport number (t?) of the anion (Cl?). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

9.
A novel sulfur‐rich adsorbent, poly(BA‐ala‐co ‐sulfur), was synthesized by reacting allyl functional benzoxazine (BA‐ala) and elemental sulfur. Simultaneous inverse vulcanization and ring‐opening reactions of benzoxazine generated copolymers in several feed ratios. The adsorption behavior of these copolymers was investigated in aqueous solutions containing Hg2+. A three level Box–Behnken design with four factors was applied in order to examine the interactive effect of Hg2+ concentration (ppm), S % in adsorbent, temperature, and pH. The optimum adsorption conditions were determined as: 10.33 ppm Hg2+, 68% S content, 329 K, and pH 6.3. Common isotherm and kinetic models were applied to the experimental data, where the Langmuir isotherm provided the better fit (q max = 79.36 mg g?1) and the pseudo‐second order fit indicated chemisorption as the process‐controlling step. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45306.  相似文献   

10.
A new biphenol, 3‐pentadecyl 4,4′‐biphenol, was synthesized starting from 3‐pentadecylphenol and was polycondensed with 4,4′‐difluorobenzophenone, 1,3‐bis(4‐fluorobenzoyl)benzene and bis(4‐fluorophenyl)sulfone to obtain poly(arylene ether)s with biphenylene linkages in the backbone and pendent pentadecyl chains. Inherent viscosities and number‐average molecular weights (Mn) of the poly(arylene ether)s were in the range 0.50 ? 0.81 dL g?1 and 2.2 × 104 ? 8.3 × 104, respectively. Detailed NMR spectroscopic studies of the poly(arylene ether)s indicated the presence of constitutional isomerism which existed because of the non‐symmetrical structure of 3‐pentadecyl 4,4′‐biphenol. The poly(arylene ether)s readily dissolved in common organic solvents such as dichloromethane, chloroform and tetrahydrofuran and could be cast into tough, transparent and flexible films from their chloroform solutions. The poly(arylene ether)s exhibited Tg values in the range 35–60 °C which are lower than that of reference poly(arylene ether)s without pentadecyl chains. The 10% decomposition temperatures (T10) of the poly(arylene ether)s were in the range 410–455 °C indicating their good thermal stability. A gas permeation study of poly(ether sulfone) containing pendent pentadecyl chains revealed a moderate increase in permeability for helium, hydrogen and oxygen. However, there was a large increase in permeability for carbon dioxide which could be attributed to the internal plasticization effect of pendent pentadecyl chains. © 2016 Society of Chemical Industry  相似文献   

11.
Crystallization of poly[bis(triiso‐propylsilylethynyl) benzodithiophene‐bis(decyltetradecyl‐thien) naphthobisthiadiazole] (PBDT‐TIPS‐DTNT‐DT) was investigated in supramolecules based on carbon nanotubes (CNTs) and reduced graphene oxide (rGO) and their grafted derivatives. The principal peaks of PBDT‐TIPS‐DTNT‐DT crystals were in the range 3.50°–3.75°. By grafting the surface of the carbonic materials, the assembling of polymer chains decreased because of hindrance of poly(3‐dodecylthiophene) (PDDT) grafts against π‐stacking. The diameters of CNT/polymer and CNT‐g‐PDDT/polymer supramolecules were 160 and 100 nm. The rGO/polymer supramolecules had the highest melting point (Tm = 282 °C) and fusion enthalpy (ΔHm = 25.98 J g?1), reflecting the largest crystallites and the most ordered constituents. Nano‐hybrids based on grafted rGO (276 °C and 28.26 J g?1), CNT (275 °C and 27.32 J g?1) and grafted CNT (268 °C and 22.17 J g?1) were also analyzed. Tm and ΔHm values were significantly less in corresponding melt‐grown systems. The nanostructures were incorporated in active layers of PBDT‐TIPS‐DTNT‐DT:phenyl‐C71‐butyric acid methyl ester (PC71BM) solar cells to improve the photovoltaic features. The best results were detected for PBDT‐TIPS‐DTNT‐DT:PC71BM:rGO/polymer systems having Jsc = 13.11 mA cm?2, fill factor 60% and Voc = 0.71 V with an efficacy of 5.58%. On grafting the rGO and CNT, efficiency reductions were 12.01% (5.58%–4.91%) and 9.34% (4.07%–3.69%), respectively. © 2019 Society of Chemical Industry  相似文献   

12.
A novel fluorinated diamine monomer with a keto group, 4‐[4‐amino‐2‐trifluoromethyl phenoxy]‐4′‐[4‐aminophenoxy]benzophenone (ATAB) was prepared by reacting dihydroxybenzophenone with 4‐chloronitrobenzene and 2‐chloro‐5‐nitrotrifluoromethylbenzene in the presence of potassium carbonate followed by catalytic reduction with palladized carbon (10%). Fluorinated polyimides IVa–e were synthesized from the diamine mentioned above via a two‐step method (thermal and chemical imidization). Polyimides IVa–e have inherent viscosities in the range 0.65–1.06 dL g?1 (thermal imidization) and 0.82–1.56 dL g?1 (chemical imidization). The polyimides prepared by chemical imidization exhibit excellent solubility. Polyimide films exhibit tensile strength, elongation and tensile modulus in the ranges 96–106 MPa, 9–13% and 1.1–1.7 GPa, respectively. The T10 values of the polyimides are in the range 540–598 °C in nitrogen and 545–586 °C in air, with more than 50–60% char yield. They have Tg values between 244 and 285 °C. The prepared polyimides show cut‐off wavelengths in the range 365–412 nm and transmittance at 450 nm in the range 80.9–94.2%. The dielectric constants of the polyimide films are in the range 3.10–3.77 at 1 kHz and 3.04–3.66 at 10 kHz, with moisture absorption of 0.14–0.40%. Copyright © 2006 Society of Chemical Industry  相似文献   

13.
A series of free‐standing hybrid anion‐exchange membranes were prepared by blending brominated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (BPPO) with poly(vinylbenzyl chloride‐co‐γ‐methacryloxypropyl trimethoxy silane) (poly(VBC‐co‐γ‐MPS)). Apart from a good compatibility between organic and inorganic phases, the hybrid membranes had a water uptake of 32.4–51.8%, tensile strength around 30 MPa, and Td temperature at 5% weight loss around 243–261°C. As compared with the membrane prepared from poly (VBC‐co‐γ‐MPS), the hybrid membranes exhibited much better flexibility, and larger ion‐exchange capacity (2.19–2.27 mmol g?1) and hydroxyl (OH?) conductivity (0.0067–0.012 S cm?1). In particular, the hybrid membranes with 60–75 wt % BPPO had the optimum water uptake, miscibility between components, and OH? conductivity, and were promising for application in fuel cells. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Two oxetane‐derived monomers 3‐(2‐cyanoethoxy)methyl‐ and 3‐(methoxy(triethylenoxy)) methyl‐3′‐methyloxetane were prepared from the reaction of 3‐methyl‐3′‐hydroxymethyloxetane with acrylonitrile and triethylene glycol monomethyl ether, respectively. Their homo‐ and copolyethers were synthesized with BF3· Et2O/1,4‐butanediol and trifluoromethane sulfonic acid as initiator through cationic ring‐opening polymerization. The structure of the polymers was characterized by FTIR and1H NMR. The ratio of two repeating units incorporated into the copolymers is well consistent with the feed ratio. Regarding glass transition temperature (Tg), the DSC data imply that the resulting copolymers have a lower Tg than pure poly(ethylene oxide). Moreover, the TGA measurements reveal that they possess in general a high heat decomposition temperature. The ion conductivity of a sample (P‐AN 20) is 1.07 × 10?5 S cm?1 at room temperature and 2.79 × 10?4 S cm?1 at 80 °C, thus presenting the potential to meet the practical requirement of lithium ion batteries for polymer electrolytes. Copyright © 2005 Society of Chemical Industry  相似文献   

15.
BACKGROUND: A new generation granular activated carbon—Bio‐Sep® beads—consist of 25% polymer (Nomex) and 75% powdered activated carbon. The porous structure and high surface area of these beads make them suitable for sorbent in adsorption columns, and for immobilization media in bioreactors. The aim of this study was to study the sorption characteristics of Bio‐Sep® beads for methyl t‐butyl ether (MTBE) and t‐butyl alcohol (TBA), and to demonstrate the advantage of their usage in a suspended growth bioreactor. RESULTS: The maximum uptake capacity of Bio‐Sep® beads for MTBE and TBA, in the studied concentration range (10–100 mg L?1), was observed to be 9.73 and 6.23 mg g?1, respectively. A 52 h desorption experiment resulted in 13.6–42.2% MTBE and 33–53% TBA desorption corresponding to the initial solid phase concentrations of 1.68–9.73 mg g?1 and 1.41–6.23 mg g?1, respectively. The sorption of TBA on the Bio‐Sep® beads was significantly hindered by the presence of MTBE. The addition of 10 g Bio‐Sep® beads (dry weight) in a suspended growth bioreactor was able to eliminate the inhibitory effect of 150 mg L?1 MTBE. CONCLUSIONS: At an equilibrium aqueous phase concentration (Ce) of 1 mg L?1, the solid phase concentration (qe) on Bio‐Sep® beads were observed as 1.44 and 0.47 mg g?1 for MTBE and TBA, respectively. The results obtained in this study indicate that Bio‐Sep® beads have reasonable sorption and desorption characteristics, which can be successfully exploited for the removal/degradation of toxic organic pollutants in high rate bioreactors. Copyright © 2007 Society of Chemical Industry  相似文献   

16.
Methylene blue (MB) redox mediator was introduced into polyvinyl alcohol/polyvinyl pyrrolidone (PVA/PVP) blend host to prepare a gel polymer electrolyte (PVA‐PVP‐H2SO4‐MB) for a quasi‐solid‐state supercapacitor. The electrochemical properties of the supercapacitor with the prepared gel polymer electrolyte were evaluated by cyclic voltammetry, galvanostatic charge–discharge, electrochemical impedance spectroscopy, and self‐discharge measurements. With the addition of MB mediator, the ionic conductivity of gel polymer electrolyte increased by 56% up to 36.3 mS·cm?1, and the series resistance reduced, because of the more efficient ionic conduction and higher charge transfer rate, respectively. The electrode specific capacitance of the supercapacitor with PVA‐PVP‐H2SO4‐MB electrolyte is 328 F·g?1, increasing by 164% compared to that of MB‐undoped system at the same current density of 1 A·g?1. Meanwhile, the energy density of the supercapacitor increases from 3.2 to 10.3 Wh·kg?1. The quasi‐solid‐state supercapacitor showed excellent cyclability over 2000 charge/discharge cycles. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39784.  相似文献   

17.
Dynamic adsorption behavior between Cu2+ ion and water‐insoluble amphoteric starch was investigated. The sorption process occurs in two stages: external mass transport occurs in the early stage and intraparticle diffusion occurs in the long‐term stage. The diffusion rate of Cu2+ ion in both stages is concentration dependent. In the external mass‐transport process, the diffusion coefficient (D1) increases with increasing initial concentration in the low‐ (1 × 10?3‐4 × 10?3M) and high‐concentration regions (6 × 10?3‐10 × 10?3M). The values of adsorption activation energy (kd1) in the low‐ and high‐concentration regions are 15.46–24.67 and ?1.80 to ?11.57 kJ/mol, respectively. In the intraparticle diffusion process, the diffusion coefficient (D2) increases with increasing initial concentration in the low‐concentration region (1 × 10?3‐2 × 10?3M) and decreases with increasing initial concentration in the high‐concentration region (4 × 10?3‐10 × 10?3M). The kd2 values in the low‐ and high‐concentration regions are 9.96–15.30 and ?15.53 to ?10.71 kJ/mol, respectively. These results indicate that the diffusion process is endothermic in the low‐concentration region and is exothermic in the high‐concentration region for both stages. The external mass‐transport process is more concentration dependent than the intraparticle diffusion process in the high‐concentration region, and the dependence of concentration for both processes is about equal in the low‐concentration region. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2849–2855, 2001  相似文献   

18.
Heteroaromatic 6,6′‐bis[2‐(4‐aminobenzene)benzimidazole] and its corresponding copolyimides were synthesized to produce high temperature resistant polyimides (PIs). Due to the rigidity and aromaticity of heterocyclic bis‐benzimidazole, and the increased hydrogen bonding interactions, these PIs were found to have a high glass transition temperature (Tg) over 457 °C, which also guarantees a better dimensional stability with a coefficient of thermal expansion (CTE) lower than 10 ppm K?1 in a wider temperature range of 50–400 °C. In addition, the PIs exhibit excellent thermal stability (5% weight loss temperature higher than 559 °C) along with outstanding mechanical properties. This study demonstrates the viability to access PIs with ultrahigh Tg and low CTE in a wider range of temperature by the incorporation of bis‐benzimidazole moieties. © 2019 Society of Chemical Industry  相似文献   

19.
Polystyrene (PS)‐incorporated polyhedral oligomeric silsesquioxanes (POSS) organic–inorganic hybrid graft copolymer could be achieved by click coupling reaction between alkyne groups in POSS and azido groups in PS via “graft onto” strategy. Alkyne‐functionalized POSS was synthesized via thiol‐ene facile click reaction and subsequent amidation reaction with very high yield. Azido‐multifunctionalized PS could be synthesized by chloromethylation and subsequent azido reaction. The chemical structures of PS‐(CH2Cl)m, PS‐(CH2N3)m, and PS‐g‐POSS were determined by Fourier transform infrared and 1H NMR characterization. PS‐g‐POSS presented a better hydrophobic property with contact angle of 113° than that of PS (85°). And PS‐g‐POSS with ≤5% of grafting degree had lower glass transition temperature (Tg) than that of PS and then it increased up to 112°C with grafting degree. An obvious aggregation of POSS phase with 10–80 nm in size was formed in PS‐g‐POSS matrix. In addition, 5 wt % of PS‐g‐POSS was added to general purpose polystyrene (GPPS) to remarkably improve its tensile strength from 45 to 57 MPa. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
BACKGROUND: The effect of acrylic acid neutralization on the degradation of alkoxyamine initiators for nitroxide‐mediated polymerization (NMP) was studied using styrene/acrylic acid and styrene/sodium acrylate random copolymers (20 mol% initial acrylate feed concentration) as macro‐initiators. The random copolymers were re‐initiated with fresh styrene in 1,4‐dioxane at 110 °C at SG1 mediator/BlocBuilder® unimolecular initiator ratios of 5 and 10 mol%. RESULTS: The value of kpK (kp = propagation rate constant, K = equilibrium constant) was not significantly different for styrene/acrylic acid and styrene/sodium acrylate compositions at 110 °C (kpK = 2.4 × 10?6–4.6 × 10?6 s?1) and agreed closely with that for styrene homopolymerization at the same conditions (kpK = 2.7 × 10?6–3.0 × 10?6 s?1). All random copolymers had monomodal, narrow molecular weight distributions (polydispersity index M?w/M?n = 1.10–1.22) with similar number‐average molecular weights M?n = 19.3–22.1 kg mol?1. Re‐initiation of styrene/acrylic acid random copolymers with styrene resulted in block copolymers with broader molecular weight distributions (M?w/M?n = 1.37–2.04) compared to chains re‐initiated by styrene/sodium acrylate random copolymers (M?w/M?n = 1.33). CONCLUSIONS: Acrylic acid degradation of the alkoxyamines was prevented by neutralization of acrylic acid and allowed more SG1‐terminated chains to re‐initiate the polymerization of a second styrenic block by NMP. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号