首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 517 毫秒
1.
Zhiqiang Hu  Shanjun Li  Xiaoyun Liu 《Polymer》2005,46(14):5278-5283
Five fluorenyl cardo diamines containing different alkyl substituents were synthesized and characterized. A series of fluorenyl cardo polyimides were prepared by polycondensation of these cardo diamines with 4,4′-oxydiphthalic anhydride (ODPA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), 3,3′,4,4′-biphenyl tetracarboylic dianhydride (BPDA) and pyromellitic dianhydride (PMDA). Most of fluorenyl cardo polyimides exhibited excellent solubility in common organic solvents such as m-cresol, chloroform, tetrahydrofuran (THF), N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAC) etc. and intrinsic viscosity in N,N-dimethylacetamide (DMAC) ranged from 0.31 to 0.92 dl/g. Tg of polyimides based on ODPA decrease with the number and size of alkyl substituents on fluorenyl cardo diamine. The results show that the incorporation of noncoplanar structure led by the introducing alkyl substituents on fluorenyl cardo diamines improves the solubility of cardo polyimides in organic solvents without sacrificing thermal properties.  相似文献   

2.
A series of novel aromatic poly(ester‐ether‐imide)s with inherent viscosity values of 0.44–0.74 dL g?1 were prepared by the diphenylchlorophosphate‐activated direct polycondensation of an imide ring‐containing diacid namely 5‐(4‐trimellitimidophenoxy)‐1‐trimellitimido naphthalene ( 1 ) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. Owing to comparison of the characterization data, an ester‐containing model compound ( 2 ) was also synthesized by the reaction of 1 with phenol. The model compound 2 and the resulted polymers were fully characterized by FT‐IR and NMR spectroscopy. The ultraviolet λmax values of the poly(ester‐ether‐imide)s were also determined. The resulting polymers exhibited an excellent organosolubility in a variety of high polar solvents such as N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethyl sulfoxide, and N‐methyl‐2‐pyrrolidone. They were soluble even in common less polar organic solvents such as pyridine, m‐cresol, and tetrahydrofuran on heating. Crystallinity of the polymers was estimated by means of wide‐angle X‐ray diffraction. The resulted polymers exhibited nearly an amorphous nature. From differential scanning calorimetry thermograms, the polymers showed glass‐transition temperatures between 221 and 245°C. Thermal behaviors of the obtained polymers were characterized by thermogravimetric analysis, and the 10% weight loss temperatures of the poly(ester‐ether‐imide)s were found to be over 410°C in nitrogen. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
A series of bismaleimides (BMI) and bisnadimides (BNI) containing pyridine ring and flexible linkages were prepared and the structural characterization of the resins was carried out by elemental analysis, FTIR, 1H NMR, and 13C NMR spectroscopy. Their curing behavior were characterized by differential scanning calorimetry and thermal stability of the cured resins were investigated by thermogravimetric analysis. In addition, a series of polyaspartimides were prepared by the polyaddition of the bismalemide with various dimaines. The polymers were characterized by FT‐IR, inherent viscosity, and molecular weight measurements. All the polyimides were soluble in many organic solvents, the glass transition temperature of the polyaspartimides are in the range of 194–231°C, 10% weight loss (T10) takes place in the temperature range of 379–482°C in N2 and char yield in the range of 44.31–53.31%. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Two series of poly(ether imide)s (PEIs) containing fluorenyl cardo groups in the main chains were synthesized, which are derived from the polycondensation of 9,9′‐bis(4‐aminophenoxyphenyl)fluorene (BAOFL) or 9,9′‐bis(3‐trifluoromethyl,4‐aminophenoxyphenyl)fluorene (6F‐BAOFL) with four kinds of dianhydrides (3,3′,4,4′‐biphenyltetracarboxylic dianhydride, 4,4′‐oxydiphthalicanhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and bisphenol‐A dianhydride), respectively. The PEI films and PEI powder were prepared by thermal and chemical imidization, respectively. The PEIs were characterized by FTIR, 1H‐NMR, differential scanning calorimetry, thermogravimetric analysis, and UV–vis were performed on inherent viscosity, solubility, and tensile tests. The effects of fluorenyl cardo groups and ether linkages on the solubility, tensile properties, thermal stability, and optical properties were investigated in detail. It was found that the PEIs had good solubility in common organic solvents and good optical transparency in visible light region. In addition, the PEI films exhibited excellent tensile and thermal properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
In this study, some polyimides containing triazoles units in the main chain was prepared from the polymerization of dialkynes including imide linkages and diazides in the presence of Cu (I) catalyst in yield of 76.2–87.6%, with inherent viscosity of 0.37–0.53 dL g?1. The obtained polymers are soluble in polar aprotic solvents such as N,N‐dimethyformamide (DMF), N,N‐dimethyacetamide (DMAc), dimethyl sulfoxide (DMSO), and N‐methyl‐2‐pyrrolidone (NMP). These polymers were characterized using FT‐IR, 1H‐NMR, and elemental analysis techniques. Their thermal stability was evaluated with thermogravimetric (TGA) analysis and differential scanning calorimetry (DSC) techniques under a nitrogen atmosphere which is indicative of their good thermal stability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
J Borah  N Karak 《Polymer International》2004,53(12):2026-2030
A hyperbranched polyether has been synthesized by a single‐step nucleophilic displacement polymerization technique between cyanuric chloride and the sodium salt of bisphenol‐A. The effects of various reaction parameters on the yield, and molecular weight, as measured by the intrinsic viscosity of the polymer, have been studied. The synthesized polymer has been characterized by FT‐IR, UV and 1H NMR spectroscopies, elemental analysis, solubility and viscosity measurements. The polymer is soluble in highly polar solvents such as N,N‐dimethylacetamide, N,N‐dimethylformamide and dimethyl sulfoxide, partially soluble in dilute aqueous NaOH solution, methanol, ethanol, chloroform, etc., but insoluble in water and non‐polar hydrocarbon solvents. The solubility parameter of the hyperbranched polymer has also been measured experimentally. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
A maleimide functionalized terpyridine, 4′(4‐maleimidophenyl)‐2, 2′ : 6′, 2″‐terpyridine, was synthesized and copolymerized with styrene via radical polymerization. The synthesized monomer was characterized by CHN elemental analysis, FT‐IR, 1H NMR, and Mass spectrometry. The structure of polymer was also confirmed by FT‐IR and UV‐Vis spectroscopy. The resulting polymer was soluble in chloroform and polar aprotic solvents, and showed an inherent viscosity of 1.5 dL/g in N,N‐dimethyl formamide at 25°C. The polymer solution in CHCl3/methanol showed a metal‐ligand charge‐transfer band of 586 nm upon addition of Fe(II) ion, exhibiting that coordination between terpyridine units and Fe(II) had occurred. The thermal stability of polymer before and after complexation with Fe(II) was examined by thermogravimetric analysis. For polymer before complexation, the weight loss started at 180°C whereas for complexed polymer it started at 260°C, which demonstrates good thermal stability of complexed polymer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
A series of novel aromatic polyamides containing both fluorene or xanthene cardo moieties and fluorinated phenoxy pendant groups were synthesized from two fluorinated isophthaloyl chlorides and four diamines containing cardo groups by the low‐temperature solution polycondensation in N,N‐dimethylacetamide (DMAc). The obtained polymers were characterized by different physicochemical techniques. All the polymers were amorphous and readily soluble in many organic solvents such as DMAc, N‐methyl‐2‐pyrrolidinone, N,N‐dimethylformamide, dimethyl sulfoxide, pyridine, and tetrahydrofuran at room temperature. The new fluorinated polyamides had high thermal stability with the glass transition temperatures of 237–259°C, the temperatures at 5% weight loss of 437–476°C in nitrogen. All the polymers formed transparent, strong, and flexible films with tensile strengths of 70.6–87.5 MPa, tensile moduli of 2.23–2.78 GPa, and elongations at break of 5.8–8.7%. These polyamide films had high optical transparency with an ultraviolet–visible absorption cutoff wavelength of 352–368 nm, low dielectric constants of 3.24–3.45 (1 MHz), and lower water absorptions of 1.06–1.43%. POLYM. ENG. SCI., 57:1234–1241, 2017. © 2017 Society of Plastics Engineers  相似文献   

9.
A series of acetylene‐terminated imide oligomers based on 2,3,3′,4′‐Diphenyl ether tetracarboxylic acid dianhydride (a‐ODPA), 3,4′‐Oxydianiline (3,4′‐ODA), and 3‐Ethynylaniline (3‐EA) with different molecular weights were synthesized by using acetic anhydride and triethylamine as dehydrating agent. Their main structure was confirmed by Fourier transform infrared spectroscopy (FT‐IR). Thermal curing processing was characterized by FT‐IR and differential scanning calorimetry (DSC). All the uncured imide oligomers showed excellent solubility (more than 30 wt %) in organic solvent such as N,N‐dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidone (NMP). These imide oligomers also possessed a very low viscosity, thus provided better processing window. These oligomers were formulated into thermosetting films by thermal crosslinking of the ethynyl groups. The properties of cured films were evaluated by dynamic mechanical thermal analysis (DMA), thermogravimetric analysis (TGA), and tensile measurement. The glass transition temperature (Tg) and elongation at break of the cured films were found to be almost >260°C and >9.2%, respectively. The cured films in air resulted in higher thermal stability than those under N2 atmosphere. Experimental results suggested that the introduction of asymmetric and flexible ether‐hinge with 3‐EA in polyimide oligomers can improve the processability of the imide oligomers and the toughness for a cured sample without sacrificing their thermal‐oxidative stability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42537.  相似文献   

10.
Three novel polyimides (PIs) having pendent 4‐(quinolin‐8‐yloxy) aniline group were prepared by polycondensation of a new diamine with commercially available tetracarboxylic dianhydrides, such as pyromellitic dianhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and bicyclo[2.2.2]‐oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride. These PIs were characterized by FTIR, 1H NMR, and elemental analysis; they had high yields with inherent viscosities in the range of 0.4–0.5 dl g−1, and exhibited excellent solubility in many organic solvents such as N,N‐dimethyl acetamide, N,N′‐dimethyl formamide, N‐methyl pyrrolidone (NMP), dimethyl sulfoxide, and pyridine. These PIs exhibited glass transition temperatures (Tg) between 250 and 325° C. Their initial decomposition temperatures (Ti) ranged between 270 and 450°C, and 10% weight loss temperature (T10) up to 500°C with 68% char yield at 600°C under nitrogen atmosphere. Transparent and hard polymer films were obtained via casting from their NMP solutions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Two series of cardo polyimides were prepared from 1,4‐bis(4‐fluorophthalimide)cyclohexane with different trans/cis ratios and phenolphthalein/o‐cresolphthalein via aromatic nucleophilic substitution reaction. The inherent viscosities of the synthesized polymers were found to be 0.55–0.66 dL g?1 in N,N′‐dimethylacetamide. The cardo polyimides showed excellent solubility in organic solvents, high glass transition temperatures (Tg) of 275–312 °C and moderate thermal stability with 5% weight loss temperatures (Td5%) of 415–441 °C in nitrogen and 370–436 °C in air. The polyimide films exhibited high optical transparency with cut‐off wavelengths of 350–355 nm and moderate mechanical properties. The different properties of the polymers caused by trans and cis configurations of 1,4‐diaminocyclohexane were also investigated. It was found that with an increasing content of trans configuration of 1,4‐diaminocyclohexane in the polyimide backbone, Tg of the polyimides increased as well as Td5%, while the solubility gradually decreased. The polyimide films had good optical transparency regardless of trans/cis configuration. © 2018 Society of Chemical Industry  相似文献   

12.
The graft copolymerization of butyl acrylate (BA) onto chitosan was tried via a new protection‐graft‐deprotection procedure. About 6‐O‐maleoyl‐N‐phthaloyl‐chitosan was synthesized and characterized by Fourier transform infrared spectra analysis (FT‐IR) and 1H‐NMR. Because the intermediate 6‐O‐maleoyl‐N‐phthaloyl‐chitosan was soluble in organic solvents, the graft copolymerization was carried out in a homogeneous system. Grafting was initiated by γ‐irradiation. The graft extent was dependent on the irradiation dose and the concentration of BA monomer, and copolymers with grafting above 100% were readily prepared. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 489–493, 2006  相似文献   

13.
Novel bisphenol monomers ( 1a‐d ) containing phthalimide groups were synthesized by the reaction of phenolphthalein with ammonia, methylamine, aniline, and 4‐tert‐butylanilne, respectively. A series of cardo poly(arylene ether sulfone)s was synthesized via aromatic nucleophilic substitution of 1a‐d with dichlorodiphenylsulfone, and characterized in terms of thermal, mechanical and gas transport properties to H2, O2, N2, and CO2. The polymers showed high glass transition temperature in the range 230–296°C, good solubility in polar solvents as well as excellent thermal stability with 5% weight loss above 410°C. The most permeable membrane studied showed permeability coefficients of 1.78 barrers to O2 and 13.80 barrers to CO2, with ideal selectivity factors of 4.24 for O2/N2 pair and 28.75 for CO2/CH4 pair. Furthermore, the structure–property relationship among these cardo poly(arylene ether sulfone)s had been discussed on solubility, thermal stability, mechanical, and gas permeation properties. The results indicated that introducing 4‐tert‐butylphenyl group improved the gas permeability of polymers evidently. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
Prepolymerizations of 4,4′‐bismaleimidodiphenylmethane (BMI), diallyl isocyanurate (DAIC), and melamine (ML) at 160–170°C and subsequent compression molding at 200–280°C yielded cured BMI/DAIC/ML resins with feed molar ratios of 4/1/1, 3/1/1, and 2/1/1 (BMI‐DAIC‐ML411, 311, and 211). Similarly, cured BMI/DAIC 1/1 and BMI/ML 3/1 resins (BMI‐DAIC11 and BMI‐ML31) were prepared. The FT‐IR analysis revealed that the maleimide and allyl groups were almost consumed for all the cured resins, and the hydrogen bonding interaction became stronger with decreasing BMI contents for BMI‐DAIC‐MLs. Based on the cured structures elucidated from the FT‐IR result, the numbers of multiple hydrogen bonds and cross‐linking covalent bonds (NMHB and NCB), and total cross‐linking bond energy (ETB) were evaluated to be 0, 7.92, and 618 for BMI‐DAIC‐ML411, 0.71, 7.81, and 627 for BMI‐DAIC‐ML311, and 0.95 mol kg?1, 7.61 mol kg?1, and 617 kcal kg?1 for BMI‐DAIC‐ML211, respectively. A higher order of glass transition and 5% weight loss temperatures for BMI‐DAIC‐MLs was 411 > 311 > 211 in accordance with a higher order of NCB. BMI‐DAIC‐MLs displayed a weak tan δ peak at 70–150°C due to dissociation of the hydrogen bonds. The flexural strength and modulus of BMI‐DAIC‐ML311 were higher than those of BMI‐DAIC‐ML411 in accordance with the difference of ETB. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43121.  相似文献   

15.
The three‐step reactions of ethyl 4‐aminobenzoate, formic acid, and halohydrocarbons afforded 10 N‐substituted‐N,N′‐diaryl‐formamidine derivatives ( F1 – 10 ) as ultraviolet absorbers. These N‐substituted formamidines were characterized by 1H NMR, 13C NMR, FT‐IR, and ESI‐MS spectroscopies. The UV–vis absorbance and fluorescence properties of the compounds F1 – 10 were investigated in different solvents and in the presences of different metal ions. The effects of the amount of Al3+, Pb2+, Zr4+ ions on the UV–vis absorbance and fluorescence properties of compound F1 were also investigated. Moreover, the thermal stability of the compounds F1 – 10 was evaluated as well as the intermediate N,N′‐bis(4‐ethoxycarbonylphenyl)‐formamidine. J. VINYL ADDIT. TECHNOL., 25:E108–E113, 2019. © 2019 Society of Plastics Engineers  相似文献   

16.
A series of alkyl sulphobetaine Gemini surfactants Cn‐GSBS (n = 8, 10, 12, 14, 16) was synthesized, using aliphatic amine, cyanuric chloride, ethylenediamine, N,N′‐dimethyl‐1,3‐propyldiamine and sodium 2‐chloroethane sulfonate as main raw materials. The chemical structures were confirmed by FT‐IR, 1H NMR and elemental analysis. The Krafft points differ markedly with different carbon chain length, for C8‐GSBS, C10‐GSBS and C12‐GSBS are considered to be below 0 °C and C14‐GSBS, C16‐GSBS are higher than 0 °C but lower than room temperature. Surface‐active properties were studied by surface tension and electrical conductivity. Critical micelle concentrations were much lower than dodecyl sulphobetaine (BS‐12) and decreased with increasing length of the carbon chain from 8 to 16, and can reach a minimum as low as 5 × 10?5 mol L?1 for C16‐GSBS. Effects of carbon chain length and concentration of Cn‐GSBS on crude oil emulsion stability were also investigated and discussed.  相似文献   

17.
Synthesis of three arms star‐shaped poly‐β‐alanine (3‐b‐ala) based on tri(prop‐2‐yn‐1‐yl) benzene‐1,3,5‐tricarboxylate (TBT) and azido terminated poly‐β‐alanine (N3‐P‐ala) was performed using click reaction. TBT was synthesized by nucleophilic substitution reaction between propargyl alcohol and 1,3,5‐benzenetricarbonyltrichloride. For the first time, N3‐P‐ala was synthesized through anionic polymerization of acrylamide using sodium azide as an initiator. TBT was characterized by FT‐IR and 1HNMR. N3‐p‐ala was characterized by FT‐IR, GPC, and 1HNMR and 3‐b‐ala was characterized by FT‐IR, GPC, 1HNMR, TGA, and XRD. The synthesized 3‐b‐ala was used for drug loading and releasing studies. Polymer loaded drug (3‐b‐ala‐D) hybrid was used in in vitro studies of drug (Diclofenac sodium) release in phosphate buffer solution (PBS) at 37 ± 0.5°C and pH 7.4. The drug loading and releasing studies were analyzed by UV‐visible spectrophotometer. 3‐b‐ala‐D was examined by AFM to analyze the surface morphology and roughness. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42124.  相似文献   

18.
A series of new polyhydrazides has been synthesized via direct polycondensation of benzofuro[2,3‐b]benzofuran‐2,9‐dicarboxylic acid (BBDA) with dihydrazides in ionic liquids (ILs) as a new class of solvents, which have interesting properties, such as nonvolatility, high ionic concentration, good thermal stability, and nonflammability. Direct polycondensation is successfully proceeded in ILs and triphenyl phosphite (condensing agent) without any additional extra components, such as LiCl and pyridine, using in similar reactions in ordinary (IL can act as both solvent and catalyst). The polyhydrazides have been obtained in quantitative yield and their intrinsic viscosities ranged from 0.21 to 0.47 dL g?1. The polyhydrazides were characterized by means of IR, 1H‐NMR, inherent viscosity (ηinh), solubility test, TGA, DSC, CHN analysis, and ultraviolet λmax. They could be thermally converted into the corresponding poly(1,3,4‐oxadiazole)s approximately in the region of 210–330°C, as evidenced by the TGA thermograms. The polymers were readily soluble in several organic polar solvents, such as DMAc, N,N‐dimethylformamide, dimethylsulfoxide, N‐methyl‐2‐pyrrolidone and could be cast into flexible films. The polymer were metallized via complexation with various transition metal. The complexes were investigated by X‐ray diffraction, IR, and UV spectrophotometry. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
A novel siloxane-containing diamine, bis(p-aminophenoxy)methylphenylsilane (BAMPS), was synthesized from the condensation of dichloromethylphenylsilane with p-aminophenol in the presence of triethylamine. A series of BAMPS-based aromatic polyimides were prepared from BAMPS and various aromatic tetracarboxylic dianhydrides by the usual two-step procedure including ring-opening polyaddition to poly(amic acid)s and subsequent cyclodehydration to polyimides. The inherent viscosities of poly(amic acid)s IIIa - IIIf ranged from 0.09 to 0.36 dL g−1 in N,N-dimethylacetamide at a concentration of 0.5 g dL−1 at 30°C. The inherent viscosities of polyimides were between 0.06 and 0.32 dL g−1 in various solvents at 30°C. Polyimides, especially IVc and IVf , were soluble in a wide range of organic solvents such as N-methyl-2-pyrrolidinone, concentrated H2SO4, N,N-dimethylacetamide, N,N-dimethylformamide, and dimethyl sulfoxide. The polyimides were characterized by elementary analysis, IR spectra, TGA, and DSC. They also had glass transition temperatures ranging from 128 to 181°C. The 10% mass loss temperature was recorded in the range of 404–443°C in nitrogen and of 315–339°C in oxygen. © 1997 John Wiley & Sons, Inc.  相似文献   

20.
A series of sulfonated poly(arylene ether nitrile) copolymers containing carboxyl groups were synthesized via a nucleophilic aromatic substitution reaction from phenolphthalein, hydroquinone sulfonic acid potassium salt, and 2,6‐difluorobenzonitrile in N‐methyl pyrrolidone (NMP) with K2CO3 as a catalyst. The synthesized copolymers had good solubility in common polar organic solvents and could be easily processed into membranes from solutions of dimethyl sulfoxide, NMP, N,N′‐dimethyl acetylamide, and dimethylformamide. Typical membranes in acid form were gained, and the chemical structures of these membranes were characterized by Fourier transform infrared analysis. The thermal properties, fluorescence properties, water uptake, ion‐exchange capacity, and proton conductivities of these copolymers were also investigated. The results indicate that they had high glass‐transition temperatures in the range 151–187°C and good thermal stability, with the 10 wt% loss temperatures ranging from 330 to 351°C under nitrogen. The copolymers showed characteristic unimodal ultraviolet–visible (UV–vis) absorption and fluorescence emission, and the UV–vis absorption, fluorescence excitation, and emission peaks of the copolymers were obvious. Moreover, the copolymer membranes showed good water uptake and proton conductivities at room temperature and 55% relative humidity because of the introduction of both sulfonic acid groups and carboxyl groups into the copolymers, whose contents were in ranges 18.45–67.86 and 3.4 × 10?4 to 3.0 × 10?3 s/cm, respectively. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40213.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号