首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend hydrogels have immense potential for use as functional biomaterials. Understanding of influences of processing parameters and compositions on mechanical and swelling properties of PVA/SA blend hydrogels is very important. In this work, PVA/SA blend hydrogels with different SA contents were prepared by applying freeze–thaw method first to induce physical crosslinking of PVA chains and then followed by Ca2+ crosslinking SA chains to form interpenetrating networks of PVA and SA. The effects of number of freeze–thaw cycles, SA content and Ca2+ concentration on mechanical properties, swelling kinetics, and pH‐sensitivity of the blend hydrogels were investigated. The results showed that the blend hydrogels have porous sponge structure. Gel fraction, which is related to crosslink density of the blend hydrogels, increased with the increase of freeze–thaw cycles and strongly depended on SA content. The SA content exerts a significant effect on mechanical properties, swelling kinetics, and pH‐sensitivity of the blend hydrogels. The number of freeze–thaw cycles has marked impact on mechanical properties, but no obvious effect on the pH‐sensitivity of the PVA/SA blend hydrogels. Concentration of CaCl2 aqueous solution also influences mechanical properties and pH‐sensitivity of the blend hydrogel. By altering composition and processing parameters such as freeze–thaw cycles and concentration of CaCl2 aqueous solution, the mechanical properties and pH‐sensitivity of PVA/SA blend hydrogels can be tightly controlled. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
In these studies, hydrogels for wound dressing were made from a mixture of Aloe vera, poly(vinyl alcohol) (PVA) and poly(N‐vinylpyrrolidone) (PVP) by freeze‐thaw, gamma‐ray irradiation, or a two‐step process of freeze‐thaw and gamma‐ray irradiation. Physical properties, such as gelation, water absorptivity, gel strength and degree of water evaporation were examined to evaluate the applicability of these hydrogels to wound dressing. The PVA:PVP ratio was 6:4, and the dry weight of Aloe vera was in the range of 0.4‐1.2 wt %. The solid concentration of PVA/PVP/Aloe vera solution was 15 wt %. Mixtures of PVA/PVP/Aloe vera were exposed to gamma irradiation doses of 25, 35 and 50 kGy to evaluate the effect of irradiation dose on the physical properties of the hydrogels. Gel content and gel strength increased as the concentration of Aloe vera in PVA/PVP/Aloe vera decreased and as irradiation dose increased and freeze‐thaw was repeated. Swelling degree was inversely proportional to gel content and gel strength. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1612–1618, 2004  相似文献   

3.
In these studies, hydrogels for wound dressings were made from a mixture of aloe vera and poly(vinyl alcohol) (PVA)/poly(N‐vinylpyrrolidone) (PVP) by freezing and thawing, γ‐Ray irradiation, or a two‐step process of freezing and thawing and γ‐ray irradiation. We examined the physical properties, including gelation, water absorptivity, gel strength, and degree of water evaporation, to evaluate the applicability of these hydrogels for wound dressings. The PVA:PVP ratio was 6:4, the dry weight of aloe vera was in the range 0.4–1.2 wt %, and the solid concentration of the PVA/PVP/aloe vera solution was 15 wt %. We used γ radiation doses of 25, 35, and 50 kGy to expose mixtures of PVA/PVP/aloe vera to evaluate the effect of radiation dose on the physical properties of the hydrogels. Gel content and gel strength increased as the concentration of aloe vera in the PVA/PVP/aloe vera gels decreased and as radiation dose increased and the number of freeze–thaw cycles was increased. The swelling degree was inversely proportional to the gel content and gel strength. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1477–1485, 2003  相似文献   

4.
Pressure‐sensitive tack is the adhesive property related to bond formation. It is a key issue when formulating hydrogel poultices for transdermal delivery, dressings, and bioelectrodes. Quantitative tack gives an indication of the potential ease and success of application when gels are brought into contact with skin. The effects of different dwell times and constant pressures on bond formation between tacky poly(vinyl alcohol) (PVA) hydrogels and a skin model were explored in the current study; these were correlated with viscoelastic properties in order to elucidate structure–function relationships. A rolling tack test was performed using a novel apparatus capable of simultaneously controlling the pressure and dwell time in a hydrogel/skin‐model‐probe system. PVA gels were formed via the freeze–thaw technique using Ca2+ ions. Lower calcium availability in PVA gels resulted in longer dwell times required to complete bond formation, decreased creep compliance (at 0.01 s) and a decreased G(ω = 40)/G(ω = 0.01) ratio, all three leading to a loss in tack strength. All tested gels were found to have pressure‐sensitive tack. The results of this study support the applicability of a rheological methodology and a novel tack‐testing procedure to quantify green‐bond formation in pressure‐sensitive‐adhesive PVA hydrogels. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2130–2135, 2003  相似文献   

5.
Porous biocompatible spongy hydrogels of poly(vinyl alcohol) (PVA)–gelatin were prepared by the freezing–thawing method and characterized by infrared and differential scanning calorimetry. The prepared so‐called ‘cryogels’ were evaluated for their water‐uptake potential and the influence of various factors, such as the chemical architecture of the spongy hydrogels, pH and the temperature of the swelling bath, on the degree of water sorption by the cryogels was investigated. It was found that the water sorption capacity constantly decreased with increasing concentration of PVA while initially an increase and thereafter a decrease in swelling was obtained with increasing amounts of gelatin in the cryogel. The water sorption capacity decreased with an increase in the number of freeze–thaw cycles. The hydrogels were also swollen in salt solutions and various simulated biological fluids and a fall in swelling ratio was noticed. The effect of the drying temperature of the cryogel on its water sorption capacity was also investigated, and a decrease in swelling was obtained with increasing temperature of drying. The biocompatibility of the prepared materials was assessed by in vitro methods of blood‐clot formation, platelet adhesion, and per cent haemolysis. It was noticed that with increasing concentration of PVA and gelatin the biocompatibility increased, while a reduced biocompatibility was noted with an increasing number of freeze–thaw cycles. Copyright © 2005 Society of Chemical Industry  相似文献   

6.
Hydrogels based on poly(vinyl alcohol) (PVA)/water‐soluble chitosan (ws‐chitosan)/glycerol were prepared by γ‐ray irradiation, freeze‐thawing, and combination of γ‐ray irradiation and freeze‐thawing, respectively. The influence of freeze‐thawing cycles, the irradiation doses, and the sequence of freeze‐thawing and irradiation processes on the rheological, swelling, and thermal properties of these hydrogels was investigated to evaluate the formation mechanisms of hydrogels made by combination of irradiation and freeze‐thawing. For hydrogels made by freeze‐thawing followed by irradiation, the physical crosslinking is destroyed partially while chemical crosslinking is formed by irradiation. However, the chemical crosslinking density reduces with the increase of freeze‐thawing cycles. Hydrogels made by irradiation followed by freeze‐thawing bear less degree of physical crosslinking with the increase of irradiation dose for the increased chemical crosslinking density. It is found that these hydrogels own larger swelling capacity and better transparent appearance than those made by freeze‐thawing followed by irradiation. Moreover, the former hydrogels have larger mechanical strength than the latter at low freeze‐thawing cycles. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
In this investigation, carboxymethyl cellulose (CMC)‐reinforced poly(vinyl alcohol) (PVA) were prepared with trimethylol melamine as a chemical crosslinker. The structure and property of hydrogels were measured by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), texture analysis, and rheometry. The FTIR spectra demonstrated that the etherification reaction successfully occurred in the PVA–CMC hydrogels, and the SEM figures exhibited the homogeneous porous structure of the CMC–PVA hydrogels. The compression strength of the PVA–CMC hydrogels was 15 times higher than that of the PVA hydrogels. Moreover, the PVA–CMC hydrogels exhibited a higher storage modulus than that of the PVA hydrogels; this illustrated better elasticity for the PVA–CMC hydrogels. As a result, CMC‐modified PVA hydrogels with high mechanical behavior will broaden the potential applications of hydrogels, such as in wound dressings, facial masks, and skin‐protection layers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44590.  相似文献   

8.
This study examined the effect of the freeze‐thaw process on the physical properties of films prepared from scleroglucan (Scl) hydrogels, suitable for drug delivery applications. Films made from Scl, using glycerol as plasticizer, were prepared from hydrogels by two procedures: a room temperature drying (RTD) method and a freeze‐thaw cyclic process, before the application of RTD, which results in a reinforced physically cross‐linked network. Films were characterized by studies of water vapor transmission (WVT), swelling, tensile tests, ESEM microscopy, FTIR, and drug release measurements. These determinations showed significant differences between films obtained by both treatments. The films prepared through freeze‐thaw cycles showed an important increase of the tensile strength with respect to those corresponding to films only air dried and a decreasing swelling degree in direct relationship to the number of freeze‐thaw cycles. A model drug, Theophylline, was included in these biocompatible films for in vitro drug release measurements, using a flat Franz cell. The physical differences observed between Scl films prepared with both methods can be explained proposing that the number of crosslinking points by hydrogen bonding increase when increasing the number of freezing and thawing cycles used for film preparation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
《Polymer Composites》2017,38(6):1135-1143
A series of nanocomposite hydrogels were prepared by a freeze‐thaw process, using polyvinyl alcohol (PVA) as polymer matrix and 0–10 wt% of hydrophilic natural Na‐montmorillonite (Na+‐MMT), free from any modification, as composite aggregates. The effect of nanoclay content and the sonication process on the nanocomposite microstructure and morphology as well as its properties (physical, mechanical, and thermal) were investigated. The microstructure and morphology were investigated by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and X‐ray diffraction technique. The thermal stability and mechanical properties of nanocomposite hydrogels were examined using thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis; moreover hardness and water vapor transmission rate measurements. It was concluded that the microstructure, morphology, physical (thermal) and mechanical properties of nanocomposite hydrogels have been modified followed by addition of nanoclay aggregates. The results showed that Na+‐MMT may act as a co‐crosslinker. Based on the results obtained, the nanocomposite hydrogel PVA/Na+‐MMT synthesized by a freeze‐thaw process, appeared to be a good candidate for biomedical applications. POLYM. COMPOS., 38:1135–1143, 2017. © 2015 Society of Plastics Engineers  相似文献   

10.
Poly(vinyl alcohol) (PVA)/water‐soluble chitosan (ws‐chitosan) hydrogels were prepared by a combination of γ‐irradiation and freeze thawing. The thermal and rheological properties of these hydrogels were compared with those of hydrogels prepared by pure irradiation and pure freeze thawing. Irradiation reduced the crystallinity of PVA, whereas freeze thawing increased it. Hydrogels made by freeze thawing followed by irradiation had higher degrees of crystallinity and higher melting temperatures than those made by irradiation followed by freeze thawing. ws‐Chitosan disrupted the ordered association of PVA molecules and decreased the thermal stability of both physical blends and hydrogels. All the hydrogels showed shear‐thinning behavior in the frequency range of 0.2–100 rad/s. Hydrogels made by freeze thawing dissolved into sol solutions at about 80°C, whereas those made by irradiation showed no temperature dependence up to 100°C. The chemical crosslinking density of the hydrogels made by irradiation followed by freeze thawing was much greater than that of hydrogels made by freeze thawing followed by irradiation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Two series of semiinterpenetrating networks (SIPN) based on linear hydrophilic poly(vinyl alcohol) (PVA) and thermo‐responsive poly(N‐isopropylacrylamide) (PNIPA), physically crosslinked with inorganic clay, are presented. The hydrogels with different crosslinking densities were prepared by varying the content of clay from 1 to 6 wt % and contained linear interpenetrant, PVA in the range of 0.5–1.5 wt %. The effect of clay content on swelling/deswelling behavior and phase transition in PNIPA gels, as well as the feasibility of reinforcing the gels with high molecular weight PVA, were analyzed. The thermal response of hydrogels, followed by DSC, confirmed that the insertion of hydrophilic PVA did not have a significant effect on the onset of the volume phase transition temperature, while the response was faster. The equilibrium degree of swelling of SIPNs and PNIPA hydrogels was in the range of 9–79 and decreased with increasing content of clay. The internal morphology and surface wettability of the hydrogels were investigated by scanning electron microscope analysis and contact angle measurements, respectively. The network structural parameters of the PNIPA and SIPN nanocomposites hydrogels, such as the average molecular weight between crosslinks, Mc, and effective crosslinking density, Ne, were determined by dynamic mechanical analysis. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44535.  相似文献   

12.
The properties of poly(vinyl alcohol) (PVA) hydrogels containing saccharides (D ‐xylose, D ‐fructose, D ‐glucose, and maltose) were examined. The effect of the addition of saccharides to PVA hydrogels on their melting temperatures was remarkable when the gels were chilled at 0°C with saccharide contents above 40 g/dL. Particularly, the melting temperature was the highest for PVA hydrogels with glucose and above 73°C at the polymer concentrations above 6 g/dL. Namely, the enthalpy of the thermal dissociation of the junctions of the spatial network ΔH was the highest of the four saccharides (glucose > fructose > maltose > xylose) and 150 kJ/mol for the hydrogels with the glucose content of 60 g/dL. The uniform preservation of saccharides and water in their gels were the highest for the gels with fructose during standing for a long time in air after freeze‐drying. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1298–1303, 1999  相似文献   

13.
Poly(vinyl alcohol) (PVA) gels can be easily prepared by either the freeze‐thawing (FT gel) method or by the cast‐drying (CD gel) method. Although the resulting nanostructured networks of the FT and CD gels are similar, their physical properties are quite different; while CD gels are transparent and elastic, FT gels are opaque and less elastic. Moreover, the tear energy of the FT gels is much greater than that of the CD gels, which is a direct result of micrometer‐scale differences in their network structures. In order to control the distribution of microcrystallites on nano‐ and micrometer scales, FT gels were prepared from PVA solutions with different water contents. As a result, the gel gradually became more transparent as the initial water content was decreased; and accordingly, the tear energy decreased. Tear resistance was improved in the case of FT gels by repeating the number of FT cycles, whereas with CD gels, this was achieved by increasing the gelation temperature. These results indicate that the microscopic network structures are characterized by a micrometer‐scale bundled‐polymer (fibril), which determines the tear energy of FT gels. Simple methods to control the fibril network structure of FT gels using a unidirectional freezing method are presented herein, with the swelling and mechanical properties of modified FT gels discussed in terms of their multiple‐scale network structures. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41356.  相似文献   

14.
PVA hydrogels offer many suitable characteristics for burn wound dressings. However, unmodified PVA gels do not act against infection. Propolis is a natural antimicrobial agent suitable for incorporation into PVA gels. PVA–propolis gels were produced by freeze–thawing method, and their microstructure, mechanical, and swelling properties (in standard PBS and a PBS‐based solution with pH 4.0) were characterized. The propolis release profiles and the gel's antibacterial and cytotoxicity properties were also investigated. The presence of propolis in the gels interfered with the PVA crystallization profile and with the mechanical properties. All samples swelled at least 400% in both media. The propolis was mostly released to the media in the first day of immersion. PVA–propolis gels with concentrations of 15% propolis or more were active against the gram‐positive bacterium Staphylococcus aureus, which is associated with initial colonization of the wound. All PVA–propolis samples acted as barriers to microbial penetration. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42129.  相似文献   

15.
Radiation can induce chemical reactions to modify polymers even when they are in the solid state or at a low temperature. Radiation crosslinking can be easily adjusted by controlling the radiation dose and is reproducible. The finished product contains no residuals of substances required to initiate the chemical crosslinking, which can restrict its application possibilities. In these studies, hydrogels for wound dressing were made from a mixture of chitosan and polyvinyl alcohol (PVA)/poly‐N‐vinylpyrrolidone (PVP) by freezing and thawing, gamma‐ray irradiation, or combined freezing and thawing and gamma‐ray irradiation. The physical properties of the hydrogel, such as gelation, water absorptivity, and gel strength, were examined to evaluate the usefulness of the hydrogels for wound dressing. The PVA/PVP composition was 60:40, PVA/PVP–chitosan ratio was in the range 9:1–7:3, and the concentration of, PVA/PVP–chitosan as a solid was 15 wt %. A mixture of PVA/PVP–chitosan was exposed to gamma irradiation doses of 25, 35, 50, 60 and 70 kGy to evaluate the effect of irradiation dose on the physical properties of hydrogels. Water‐soluble chitosan was used in these experiment. The physical properties of the hydrogels, such as gelation and gel strength, were higher when the combination of freezing and thawing and irradiation were used rather than just freezing and thawing. The PVA/PVP–chitosan composition and irradiation dose had a greater influence on swelling than gel content. Swelling percent increased as the composition of chitosan in PVA/PVP–chitosan increased. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1787–1794, 2002  相似文献   

16.
The mechanical properties and molecular structure of a poly(vinyl alcohol) (PVA) film, which was obtained by eliminating water from a PVA hydrogel using repeated freeze/thaw cycles, were investigated by tensile tests, thermal analysis, and X‐ray diffraction measurements. The mechanical properties of PVA with 99.9% saponification were measured as a function of the number of freeze/thaw cycles performed. The tensile strength and Young's modulus increased and the elongation at break decreased with increasing freeze/thaw cycles. The tensile strength and Young's modulus of PVA films obtained after seven freeze/thaw cycles were as high as 255 MPa and 13.5 GPa after annealing at 130°C. Thermal analysis and X‐ray diffraction measurements revealed that this is because of a high crystallinity and a large crystallite size. A good relationship between the tensile strength and the glass transition temperature was obtained, regardless of the degree of saponification and annealing conditions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40578.  相似文献   

17.
We report development of poly(vinyl alcohol) (PVA)-based novel injectable hydrogel nanocomposite scaffolds. Nanocellulose (NC), synthesized from agricultural biomass, was used as reinforcement within PVA matrix. The hydrogels were formed using physical crosslinking process involving multiple freeze–thaw cycles. A range of bio-nanocomposite hydrogels were prepared with varying concentrations of NC. With increasing loading of NC, crystallinity was found to be increased, which could be attributed to nucleating effect and crystalline nature of nanofibrillar cellulose. Investigation of microstructural surface topology indicated reduced surface perturbations upon incorporation of NC. Fourier transform infrared spectroscopy studies further indicated presence of characteristic functional groups and possible interactions between PVA and NC. Enhanced structural integrity and dynamic stability of the bio-nanocomposite hydrogels were also confirmed by carrying out rheological investigations at different frequency, amplitude, temperature, and time sweeps. Further, the bio-nanocomposite hydrogels demonstrated excellent injectability and self-standing behavior, establishing the promising potential as injectable scaffolds. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48789.  相似文献   

18.
Freeze‐thaw treatment of concentrated (>5 g/dL) aqueous solutions of poly(vinyl alcohol) (PVA) (MW 115,000; DD ≈100%) resulted in the formation of opaque gels. The extent of such a cryostructuration process was exhibited in the rheological properties of similar PVA cryogels. The gels' strength depended on the initial polymer concentration in the solution to be frozen and on the conditions of a cryogenic influence. The key factor was the defrostation dynamics: the slower the thawing rate, the stronger the cryogel sample formed, provided other parameters of the process were identical. The observation for the kinetics of the freeze‐thaw–induced gel formation revealed the extreme character of the temperature dependence of the efficacy of PVA cryotropic gelation, the maximum point being in the vicinity of −2°C. It was shown that the effect of the strengthening of PVA cryogels prepared by means of a single‐cycle cryogenic treatment could be reached either with use of as slow as possible thawing regimes, or by the prolonged frozen storage of the samples at “high” subzero temperatures. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2017–2023, 2000  相似文献   

19.
Two series of pH‐sensitive semi‐interpenetrating network hydrogels (semi‐IPN) based on chitosan (CS) natural polymer and acrylamide (AAm) and/or N‐hydroxymethyl acrylamide (HMA) monomers by varying the monomer and CS ratios were synthesized by free radical chain polymerization. 5‐Fluorouracil (5‐FU), a model anticancer drug, has been added to the feed composition before the polymerization. The characterization of gels indicated that the drug is molecularly dispersed in the polymer matrix. The swelling kinetics of drug‐loaded gels have decreased with increased HMA content at 37°C in both distilled water and buffer solutions with a pH of 2.1 or 7.4. Elastic modulus of the gels increased with the increase in HMA content and higher CS concentration enhanced the elastic modulus positively. Moreover, cumulative release percentages of the gels for 5‐FU were ca. 10% higher in pH 2.1 than those in pH 7.4 media. It was determined that they can be suitable for the use in both gastric and colon environments. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41886.  相似文献   

20.
Our previous research showed that a simple ultra‐high‐pressure process made poly(vinyl alcohol) (PVA) solution into a macrogel and nanoparticles. To investigate the release properties of PVA hydrogels prepared by the ultra‐high‐pressure treatment, we prepared hydrogels containing model drugs by pressurizing a PVA solution with Alfa‐G Hesperidin or Oil Blue N as a water‐soluble or an oil‐soluble model drug, respectively. In the case of the oil‐soluble drug, an oil‐in‐water emulsion, Oil Blue N containing dodecane in a PVA solution, was used by homogenization before pressurization. The average diameter and the diameter distribution of oil droplets before and after the ultra‐high‐pressure treatment were almost the same. However, the PVA hydrogel prepared at 10,000 atm for 10 min exhibited the slowest release rate of model drugs. Thus, we found that the release rates of the model drugs from the PVA hydrogels were controlled by the degree of crosslinking in the resulting gels, which was determined from the operation parameters of the ultra‐high‐pressure treatment, such as the pressure, time, and concentration of the PVA solution. Therefore, an ultra‐high‐pressure process is promising for drug‐carrier development because of the nonharmful simple preparation process. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号